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Zusammenfassung

Die Bewertung von schwingungsbasierten Prüfmethoden zur Zustandsbewertung von Tragw-

erken sollte unter minimalem Eingriff in bestehende Konstruktionen erfolgen. Deshalb wird

eine Bewertung üblicherweise durch ein numerisches Modell realisiert. Im Bereich des Bauin-

genieurwesens werden von Fall zu Fall für gewöhnlich Vereinfachungen getroffen, welche die

Qualität des numerischen Modells und der Beurteilung der Prüfmethode beeinflussen können.

Die Kriterien des Nachweises der Zuverlässigkeit einer schwingungsbasierten Prüfmethode in

Verbindung mit einem abstrahierten numerischen Modell des zu untersuchenden Bauwerks

beinhaltet Typ, Maße und Position eines Schadensbildes, eine geeignete Anordnung von

Sensoren, zum Beispiel Beschleunigungssensoren, zur Aufzeichnung von Daten des aktuellen

Zustands des Bauwerks und die Kalibrierung des numerischen Modells unter Zuhilfenahme

der aufgenommenen Daten. Dadurch ist die Zuverlässigkeit einer solchen Prüfmethode von

der Qualität des numerischen Modells, des gewählten Versuchsaufbaus und der Qualität

der gemessenen Daten abhängig. Ein Verfahren, welches den Einfluss dieser verschiedenen

Faktoren auf die Zuverlässigkeit einer schwingungsbasierten Prüfmethode zur Untersuchung

der Schadensbildung an Bauwerken ermittelt, ist zur Zeit nicht vorhanden. Ziel dieser

Arbeit ist die Untersuchung der Beziehung zwischen der Qualität der gewählten numerischen

Modelle, des Versuchsaufbaus, der zugehörigen Messwerte und der Leistungsfähigkeit von

schwingungsbasierten Prüfmethoden zur Schadensidentifikation an Bauwerken. Aufbauend auf

den oben genannten Untersuchung ist das weitere Ziel dieser Forschungsarbeit ein praxisfähiges

Framework, das den Prozess der Bewertung der Leistungsfähigkeit schwingungsbasierter

Prüfverfahren zur Schadensdetektion von Bauwerken ordnet und standardisiert. Das Frame-

work soll Anwendung im Vergleich verschiedenartiger Anpassungen des Prüfverfahrens und

der Auswahl jener Parameter, welche die höchste Wahrscheinlichkeit einer Schadensdetektion

liefern, finden. Das Framework soll mit hilfe vorhandener Anwendungen und Beispielen aus der

Literatur validiert werden. Die Ergebnisse sollen als statistische Datenbank dokumentiert und

für weitere Forschung und Entwicklung verwendet werden.

Im Bauingenieurwesen werden sowohl datenbasierte, als auch modellbasierte Prüfmethoden

zur Untersuchung der Schadensbildung angewandt. Eine datenbasierte Prüfmethode vergleicht

das gemessene Antwortsignal eines schadhaften Tragwerks mit dem gemessenen Antwortsignal

des unbeschädigten Tragwerks. Eine modellbasierte Prüfmethode vergleicht das gemessene

v



vi

Antwortsignal eines Tragwerks mit dem im numerischen Modell berechneten Antwortsignal des

unbeschädigten Tragwerks. In einigen Bereichen des Ingenieurwesens, beispielsweise der Luft-

und Raumfahrttechnik oder des Maschinenbaus, wird die Zuverlässigkeit von Prüfmethoden

an der Erfassungswahrscheinlichkeit der Schadensbildung gemessen. Dafür ist die statistische

Auswertung großer Testreihen nötig, die zum Beispiel an Flugzeug- oder Automobilteilen

aufgenommen wurden. Die Literatur stellt eine Reihe von Studien, statistischen Datenbanken

und Standards bereit, die zur Evaluierung von Prüfmethoden zur Schadensdetektion in den

entsprechenden Bereichen des Ingenieurwesens genutzt werden. Speziell im Bauingenieurwesen

werden numerische Modelle als Alternative zu physischen Modellen oder Bestandsbauwerken

angewandt, um die Beschränkungen statistischer Auswertungsmethoden zu umgehen. Dennoch

sind bestimmte Standards oder statistische Datenbanken zur Bewertung der Zuverlässigkeit

von schwingungsbasierten Prüfmethoden unter Verwendung von numerischen Modellen noch

nicht vorhanden. Obwohl verschiedene allgemeine Modelleigenschaften, wie beispielsweise

Sensitivität, Komplexität, Unsicherheit etc., bereits als Kriterien zur Modellqualitätsanalyse

verwendet werden, ist es notwendig weiter nach einer eindeutigen Klassifikation der Resultate

zu forschen. Siehe GRK1462
”
Bewertung gekoppelter numerischer und experimenteller

Partialmodelle im Konstruktiven Ingenieurbau“. Unsicherheiten können in zwei Kategorien

unterteilt werden: aleatorische und epistemische Unsicherheiten. Eine aleatorische Unsicherheit

gilt als unvermeidbare Unsicherheit, weil sie die inhärente Variation und die Einzigartigkeit

eines Systems beschreibt. Eine epistemische Unsicherheit gilt als vermeidbare Unsicherheit, die

aufgrund von Informations- und Wissensmangel z. B. aufgrund von unvollständigen Messdaten,

einer Nichtberücksichtigung von wichtigen Systemparametern in einem mathematischen Modell

oder fehlendem Fachwissen entstanden ist. Die Zuverlässigkeit von Monitoring Systemen kann

durch probabilistische oder deterministische Verfahren beurteilt werden. Im Bauingenieurwesen

sind noch immer deterministische Methoden vorherrschend, welche meist nur aleatorische

Unsicherheiten berücksichtigen. Es gibt nur sehr wenige Studien, die einen probabilistischen

Ansatz verfolgen, indem verschiedene Unsicherheitsfaktoren betrachtet werden. Dennoch ist

die praktische Anwendbarkeit solcher Methoden noch stark begrenzt. Die probabilistischen

Verfahren beruhen auf dem Grundsatz, dass eine Prüfmethode als zuverlässig betrachtet

wird, welche eine hohe Erfassungswahrscheinlichkeit vorhandener Schäden und eine niedrige

Wahrscheinlichkeit einer Fehldetektion bei Schadensfreien Konstruktionen aufweist.

Es wurde ein modellbasiertes Framework entwickelt, welches den probabilistischen Ansatz zur

Bewertung der Zuverlässigkeit von Methoden zur Schadensdetektion nutzt. Bisherigen Arbeiten

ist zu entnehmen, dass dieser Ansatz, im Gegensatz zu deterministischen Methoden, eine genaue

Bestimmung der Unsicherheiten liefert und eine zuverlässigere Zustandsbewertung ermöglicht.

Das Framework vereint ausgewählte und in mehreren Fachrichtungen anwendbare Methoden

und Konzepte, wie Sensivitätsanalysen, Modellpflege (Model Updating), etc. Die Ergebnisse des

entwickelten Frameworks können mit Beispielen aus bisherigen Veröffentlichungen verglichen

und validiert werden. Der Bewertungsprozess hierfür kann standardisiert und für weitere
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Forschung verwendet werden. Zur experimentellen Untersuchung wurden Positionierung

und Anzahl der Sensoren, sowie die Eigenschaften der Anregung, welche zur Ermittlung

des Tragwerksverhaltens genutzt wurden, variiert. Die Anordnung wurde basierend auf

vordefinierten Positionen der Schadensbildung und dynamischen Eigenschaften des Tragwerks

(Eigenfrequenzen und -formen) ausgewählt. Im Bereich des Bauingenieurwesens werden

von Fall zu Fall für gewöhnlich Vereinfachungen getroffen, um den Rechenaufwand zu

reduzieren. Zur Bewertung der Qualität des vereinfachten Modells, wurde untersucht,

mit welcher Genauigkeit die zu detektierenden Schadensgrößen abgeschätzt werden können.

Zur Quantifizierung der Qualität wurde ein korrelationsbasierter Indikator QV eingeführt,

welcher das Verhältnis des Strukturverhaltens des vereinfachten Modells zum Strukturverhalten

des Referenzmodells bezogen auf verschiedene Schadensgrößen beschreibt. Der Einfluss

epistemischer Unsicherheiten auf die Schadensdetektion, welche aus Vereinfachungen des

Modells resultieren können, wurde unter Verwendung einer globalen Sensitivitätsanalyse

untersucht. Die modellbezogenen epistemischen Unsicherheiten wurden durch die Festlegung

eines Parameterbereiches simuliert. Die möglichen Bereichsgrenzen jeden Parameters wurden

Beispielen aus bisherigen Veröffentlichungen entnommen. Die Qualität des Versuchsaufbaus

wurde bezüglich der Sensitivität des simulierten Strukturverhaltens auf Schadensbildung

beurteilt. Die Qualität wurde mittles des sensitivitätsbasierten Indikators QDOE quantifiziert,

welcher sich aus dem Bezug der Ergebnisse der globalen Sensitivitätsanalyse zum simulierten

Strukturverhalten ergibt. Für die numerische Untersuchung wurden Experimente unter

Berücksichtigung normalverteilter aleatorischer Unsicherheiten simuliert. Im experimentellen

Beispiel wurden Versuche mehrfach wiederholt, um eindeutige aleatorische Unsicherheiten im

Strukturverhalten erfassen zu können. Die Messwerte aus vorangegangenen Experimenten

werden mittels Bayesian Model Updating bewertet und auf die vorhandenen Modellinfor-

mationen bezogen, um dadurch die epistemischen Unsicherheiten der Eingangsparameter zu

reduzieren. Der Bewertungsprozess wird durch den Indikator QM quantifiziert, der die

Verringerung der epistemischen Unsicherheit nach der Modellanpassung ausdrückt. Die

Zuverlässigkeit der Prüfmethode wird durch die Wahrscheinlichkeit einer Schadensdetektion

und die Wahrscheinlichkeit einer Fehldetektion beschrieben. Beide Werte werden im Indikator

QD berücksichtigt. Die Indikatoren QV , QDOE, QM und QD, können Werte zwischen 0

(schlechteste Qualität) und 1 (beste Qualität) annehmen, normalisieren die entsprechenden

Bezugswerte und können in einer umfassenden Datenbank für unterschiedliche bautechnische

Strukturen gespeichert werden. Die detaillierte Anwendungsbeschreibung jeden Schrittes des

entwickelten Frameworks wird durch zwei numerische Beispiele unterstützt. Ein Einfeldrahmen

in Stahlbauweise und ein Kragbalken wurden für Experimente unter Laborbedingungen genutzt,

um die Ergebnisse der numerischen Untersuchungen zu validieren. 26 identische Masten für In-

situ-Messungen wurden zur Validierung des entwickelten Frameworks genutzt und bilden die

Basis für eine statistische Datenbank, welche den Zusammenhang zwischen QDOE, QM und QD

dokumentiert und als Richtlinie zur Bestimmung der Zuverlässigkeit von Prüfmethoden genutzt
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werden kann.

Die Ergebnisse zeigen, dass der Einfluss der Vereinfachung eines numerischen Modells auf die

Genauigkeit der Abschätzung einer Schadensgröße von der Anordnung des Versuchs abhängt,

welche zur Berechnung des Tragwerksverhaltens genutzt wird. Im Beispielexperiment betrug

QV =0,2 bei einer harmonischen Anregung des Einfeldrahmens in Stahlbauweise von 20 Hz.

Aus einer harmonische Anregung des identischen Systems von 60 Hz resultierte QV =0,7

was bedeutet, dass sich der Fehler im Gegensatz zur Anregung mit 20 Hz verringert. Die

experimentelle Untersuchung unter Laborbedingungen zeigte die mögliche Größenordnung eines

Fehlers bei der Abschätzung der Schadstelle infolge einer fehlerhaften Vereinfachung. Am

Beispiel des Kragbalkens lässt sich zeigen, dass ein nicht geeignetes Schadensmodell zum

Indikator QV =0,7 führte und somit der Schaden im numerischen Modell 30 % größer ist,

als im Versuch unter Laborbedingungen. Die Untersuchungen zeigen, dass die Betrachtung

dynamischer Eigenschaften eines Tragwerks die Sensitivität einer Schadensdetektion beeinflusst.

Am Beispiel lässt sich zeigen, dass eine Verringerung der Steifigkeit unter harmonischer

Anregung mit einer Frequenz kleiner der 1. Eigenfrequenz des Systems zum Indikator

QDOE=0,95 und somit zu QD ≈1 führt. Wird das System mit einem Vielfachen der 1.

Eigenfrequenz angeregt, nimmt QDOE=0,01 und QD ≈0 an. Die Untersuchungen zeigen, dass

die Betrachtung von zusätzlichen Messungen von Vorteil ist, wenn ein Schaden unter einem

bestimmten Wert detektiert werden muss. Die Ergebnisse der Arbeit zeigen Eine Verringerung

der Steifigkeit von 15 % ohne Berücksichtigung zusätzlicher Messungen (QM=0) führte zu

QD ≈0,6. Wurden zusätzliche Messungen in QM=0,9 berücksichtigt, resultierte QD ≈0,97.

Dieser Effekt ist jedoch nicht bei der Detektion einer Verringerung der Steifigkeit um 25 % zu

beobachten, wobei QD=1 für beide Fälle gilt. Die entwickelte Datenbank, welche auf den zwei

Experimenten und In-situ-Messungen an 26 identischen Masten basiert, wurde tabellarisch

und graphisch ausgewertet. Die Ergebnisse zeigen einen definierten Bereich zuverlässiger

Prüfmethoden (QD=1) im Bezug auf QDOE und QM . Diese Datenbank, welche die erste

ihrer Art im Bereich schwingungsbasierter Prüfmethoden ist, kann als Referenz für weitere

Messungen und zum gezielten Design von Experimenten zur Schadensdetektion dienen. Das

Framework wurde unter Zuhilfenahme von dokumentierten Experimenten, welche ausreichend

Daten für eine entsprechende Bewertung liefern, entwickelt. Weitere Forschung könnte in

der Anwendung des Frameworks auf bereits veröffentlichte Experimente liegen. Die daraus

entstehenden Ergebnisse können als Erweiterung der erarbeiteten Datenbank dienen und für

die Erstellung eines Standards für die Beurteilung von schwingungsbasierten Prüfmethoden

des Bauingenieurwesens. Die Untersuchungen können auch auf andersartige Prüfmethoden

erweitert werden, solange eine entsprechende numerische Simulation möglich ist.



Abstract

This work aims to present a model-based strategy to investigate the reliability of an inspection

method for damage detection considering model quality. The developed strategy is a

probabilistic framework which combines several methods and approaches, such as sensitivity

analysis, model updating, etc., that can be used in various disciplines.

Accomplishing the reliability assessment of an inspection method requires a precise definition

of damage in a specific structure. An appropriate design of the experiment should be arranged

to distinguish between the variation of the outputs due to the uncertainty of the selected

input parameters and due to damage. Evaluating the validity of the chosen design of the

experiment can be achieved by performing a sensitivity analysis. Based on the results of the

performed sensitivity analysis, the important parameters which influence the studied outputs

significantly are selected. The uncertainty of the important parameters is updated by a Bayesian

inference approach. A Meta-Modeling approach can be followed to reduce the computational

effort. Damage indicators are developed based on the target damage size and the response

of the studied structure considering obtained posterior density functions of the updated input

parameters. The damage indicators are combined with a probability of detection method to

estimate the probability of detection curve. In this work, a method was developed and presented

to compute the probability of detection curves. The reliability of an inspection method is

assessed using the probability of detecting the predefined target damage size associated with a

chosen probability of false alarm.

The described procedure was used to investigate the relationship between the reliability of a

chosen inspection method for damage detection and the quality of the chosen models. In this

work, four essential partial models were considered. They are the numerical model, the design

of the experiment, measurements and damage indicator. Since global vibration-based methods

have been often used in civil engineering for system identification and damage detection, the

developed framework was applied to evaluate the performance of a chosen vibration-based

inspection method for damage detection.

The developed strategy was illustrated by evaluating the performance of the inspection method

to detect damage in a single degree of freedom system. The results show that choosing

appropriate excitation properties can lead to a structural response which is sensitive to the
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studied damage model. Moreover, model updating reduced the uncertainty of the input

parameters associated with damage and improved the reliability of the inspection method.

The strategy was applied to a three degrees of freedom system to evaluate the performance of

the chosen inspection method including several multi-damage and damage locations scenarios.

Four damage cases were studied. In the first case, the damage was considered at the top floor of

the structure. In the second case, the damage was considered in the middle floor, and the third

case damage was at the bottom floor. In the fourth cases, the damage was considered in all the

floors. A concept of damage patterns, which represent the relationship between the structural

response and the studied damage model, was introduced to consider damage location and

damage classification. The results show that the reliability of the inspection method depends

on damage location and damage scenario. Moreover, damage patterns can help to reduce the

probability of false alarm.

The performance of a chosen inspection method to detect damage in a steel frame structure

was evaluated using the developed strategy considering the different design of the experiment.

Damage was introduced in the physical model by releasing the hinges located at both ends of

the beam. Five damage cases were studied. The undamaged case was considered if both hinges

were fixed. In the fifth damage case, both hinges were completely released. Since experimental

results show that damage increases the damping of the frame, empirical damping models

were proposed and introduced in results of the numerical model to represent the development

of damage. The results show that the reliability of the inspection method depends on the

design of the experiment model including the number of sensors and the excitation properties.

Moreover, it may be possible to improve the quality of the numerical model without considering

complex phenomena (damping influence due to damage) if the boundary conditions (excitation

properties in this example) are optimized to minimize the influence of those complex phenomena

on the studied structural response.

The reliability of an inspection method for damage detection was evaluated in case of a

cantilever with an extension which includes two rubber bands fixed to the top of the cantilever

and two weights suspended at the second ends of the bands to generate pretension forces that

change the support conditions of the system. The undamaged case was considered if both

weights were at their maximum which provide tension forces at the end of the cantilever.

Damage was developed by reducing the masses on both sides equally. The experimental results

show that if damage was increased, the damping of the structure decreases. Two different

numerical models were developed to describe the structure and damage. In the first model, the

damage was introduced into the structure by reducing the stiffness of the cables attached to

the cantilever. In the second model, the influence of the damping effect due to the cables was

considered. The results show that the reliability of the inspection method was improved if the

damping was included. Also, it was important to consider the imperfection of the structure

in the numerical model to obtain agreement between the numerical and experimental models
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considering damage.

The experimental study shows that performing a prior modal test and applying system

identification to obtain modal parameters can help to understand the structural behavior

and to develop appropriate numerical models which lead to an accurate inspection method

assessment. However, if an agreement is obtained between the structural response calculated

using the developed numerical model and the structural response measured using the physical

model before considering damage, it is not necessary that this agreement would remain after

considering damage. Therefore, the quality of the numerical model should be evaluated after

considering damage to ensure an accurate evaluation of the chosen inspection method.

In many engineering disciplines, such as mechanical engineering, producing large amounts of

standardized products provides the opportunity to apply a well-defined reliability assessment

procedure which is based on inspecting a large number of samples that emulate a real structure

or a part of it. Strict statistical restrictions related to the test conditions, for example, number

of samples, damage size interval, number of repetition can be followed. In the civil engineering

discipline, each structure is a unique product. Therefore, in most cases applying a traditional

reliability assessment procedure is not possible. However, there are some rare cases where

civil engineering standardized products are produced in large amounts. In this work, one of

these rare cases is presented. The relationship between the reliability of the inspection method

and the experimental models were investigated in the case of 26 identical structures (poles)

considering two different setups. Two numerical models were developed. In the first numerical

model, which was considered as a reference model, cables were modeled to consider the influence

of their mass and stiffness on the studied structural response. In the second numerical model,

the cables were replaced by a point mass, and their stiffness was ignored. The second model

reduced the computational time by 40%. The damping influence was included in both models.

The results show that the stiffness of the cables has a local effect. Measurements show that

cables increase the modal damping of the first two mode shapes significantly. Therefore, the

damage was introduced in the models by reducing the mass of the cables and their damping

influence. The experimental data of the 26 poles was used separately to update the model

and calculate the probability of damage detection. It was concluded that the reliability of the

inspection method was improved if the dynamic test under impulse excitations activated the

damping effect of the cables.

The results show that the reliability of an inspection method for damage detection depends on

the chosen models. Neglecting important phenomena that describe the studied structure and/or

the studied damage can lead to the wrong diagnosis of the reliability of the chosen inspection

method. Moreover, a damage indicator that is sensitive to parameters that are not related to

damage increases the probability of false alarm. The reliability of the studied inspection method

depends on the studied damage scenario, damage location, number of sensors, location of the

sensors, excitation properties, input parameters uncertainty and measurement uncertainty.
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Chapter 1

Introduction

1.1 Motivation

The safety and the functionality of engineering structures under many types of random loads

have been one of the major concerns in engineering disciplines. This is because of the high

risk caused by damage, especially in the case of lifeline structures. For example, damage

in dams, gas stations, the nuclear power plant can lead not only to local but also to global

disasters, Faber [2007]. Therefore, maintenance is an essential part that should be considered

for these important structures. However, the lack of knowledge about the current state of the

concerned structure can result in an expensive maintenance plan if damage progresses slower

than expected. On the other hand, the maintenance plan cannot be sufficient if the development

of damage is rapid.

Modern maintenance plans have been designed based on information that can be acquired

about structural damage. For this reason, damage should be identified in the early phase by

a well-designed structural health monitoring system. Choosing a monitoring system depends

on the structure properties, damage type, budget, etc. One of the most important elements of

a well-designed monitoring system is a reliable inspection method for damage detection. The

reliability of an inspection method implies that if there is damage, the monitoring system should

identify it with a high probability of success. Moreover, if there is no damage, the probability of

a false alarm should not exceed a certain level. Also, a designed monitoring system should fulfill

two important requirements. First, the integrated inspection method must be nondestructive.

The second is that the operation of the structure should not be interrupted.

Structural health monitoring has been developed in many engineering disciplines. For instance,

in aerospace engineering, different inspection methods have been utilized for detecting various

types of cracks and notches in airframes. Several procedures have been developed to prove

the reliability of a chosen inspection method. A traditional reliability assessment is based

2
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on inspecting a large the number of samples that emulate a real structure or a part of it.

Several damage sizes should be introduced to the samples, Georgiou [2006]. Strict statistical

restrictions related to the test conditions have to be followed, for example, number of samples,

damage size interval, number of repetition, etc. Then, the probability of detection (POD) and

the probability of false positive (PFP) which is also named as the probability of false alarm

(PFA) should be estimated for each damage size. The reliability of the tested inspection method

is evaluated by a damage size that should be detected with a chosen probability. However, for

civil engineering structures, producing physical samples for statistical tests is not realistic.

Moreover, the uniqueness and the complexity of the studied structure can be a serious problem

which makes the following statistical restrictions difficult or even impossible.

To overcome the application limits of statistical assessment methods, numerical models have

been used as an alternative to physical models and real structures. The importance of the

numerical models increases rapidly because of the significant development of computational

effort and economical requirements. However, it is still difficult to represent what is called reality

in a single model. As a result, abstractions should be taken into account when a numerical

model has to be chosen. Therefore, model developers should use their experience and knowledge

to answer the following questions:

• How far can the model be developed?;

• How far need the model to be developed?;

• How far should the results of the model be trusted?;

• What are the consequences of using a wrong model?.

Answering the questions raised leads to several classes of numerical models which describe a

certain phenomenon. Several results may be obtained if different numerical models are used

to assess the reliability of an inspection method for damage detection. Therefore, choosing the

best model requires following an approach which provides a subjective and reliable comparison

between models under consideration. Although several general model properties, such as

sensitivity, complexity, uncertainty, etc., have been used to establish criteria for model quality

evaluation, an explicit meaning of the results obtained from such criteria still requires more

research.

Most of the previous studies investigated damage detection in civil engineering by following a

general procedure. This procedure is based on developing a model for a nondamaged structure

as a first step and then introducing a damage target size to the model. Many damage indicators

and inspection methods have been developed to monitor the variation of a chosen structural

response due to several damage types, Doebling et al. [1996], Sinou [2009]. However, in most

cases, the variation of the structural response due to other input parameters uncertainty was not
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considered. As a result, false alarm observed by the variation of the material and geometrical

properties of the studied structure that leads to a structural response similar to what damage

produces were not often investigated. This raises the question of the validity of such a procedure

to assess the reliability of a chosen inspection method.

Investigating the latent relationship between the quality of the chosen models and the reliability

of an inspection method for damage detection considering the influence of different types of

uncertainty is the aim of this work.

1.2 Methodology

Since the reliability of an inspection method for damage detection is influenced by many factors,

the studied problem was decoupled into several parts. In this work, these parts were named

Partial Models. Generally, a large number of partial models can be obtained. However, the

decoupling procedure was based on classifying models in specific categories. The first partial

model GM includes a numerical model of a studied structure with input parameters {θ} and a

chosen damage model θg. Numerical models can be analytical or approximated models based

on a discretization method such as the Finite Element method. As a result, the model can be

implemented and solved by an available computational effort to obtain a response d.

GM : {θ}, θg → d(θg, {θ}) (1.1)

The second partial model is the design of experiment (DOE) which includes a process that

maximizes the probability of reaching the objectives of the performed tests by acquiring

information about the important input parameters {θ̂} if a structural response is measured.

The design of experiment model should give all necessary information required to simulate

or conduct the desired nondestructive test, for example, excitations F , structural response

quantities such as the chosen response type, sensor locations [U ] = [X, Y, Z], etc.

DOE : {θ̂} ⊆ {θ} → F, [U ], · · · (1.2)

The third partial model is the measurement gE. It contains the results of the performed

tests and measurement uncertainty ǫd̄ obtained from a physical model GE taking into account

the quality of the sensors and the influence of the surrounding environment such as ambient

vibration γF . Experiments should be performed based on a design of experiment partial model

including the experimental damage model θgE.

gE : GE, DOE, γF , θ
g
E → d̄ (1.3)
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The fourth partial model includes damage-response relationships which are usually named as

damage indicators. It represents the variation of a chosen structural response due to damage

θg in a studied structure considering different types of uncertainty ǫ.

f : θg → d(θg, ǫ) (1.4)

The developed strategy starts by combining the numerical and the design of experiment partial

models. The coupling is achieved statistically. This means, probabilistic models are chosen to

represent the uncertainty of the input parameters then a sampling method is used to generate

samples. A sample contains a combination of input parameters values based on the assigned

probabilistic models. The numerical model is solved for each sample. As a result, the response

of the studied structure is obtained for each sample. In the second step, the coupled models

are combined with measurements by a Bayesian updating approach. The resulting posterior

probability density functions of the inputs are used to obtain the structural response and

its uncertainty due to damage produced using the chosen damage model. In this step, the

calculated response, which performs as a damage indicator, is used to evaluate the reliability

of the chosen inspection method.

Assessment procedures have been applied to evaluate the chosen coupled partial models. A

studied numerical model was evaluated by investigating the agreement between the structural

response computed using a numerical model GM and measured from an experimental model

GE due to a damage model θg and θgE. A design of experiment model is verified by

performing a sensitivity analysis. The design is considered optimal if the variation of a chosen

structural response is sensitive to the desired input parameters and insensitive to unwanted

input parameters. The quality of the measurements for model updating is evaluated by their

information content that should lead to less uncertainty. The probability of detection curve

and the probability of false alarm are used to evaluate the damage-response relationship model

and to assess the reliability of the inspection method for detecting the required damage target

size.

The procedure described above represents a model-based strategy for assessing and improving

the reliability of an inspection method for damage detection using the probability of detection

curves. The developed strategy is a probabilistic framework which combines several methods

and approaches, for example, sensitivity analysis, model updating, etc., that can be used in

various disciplines.
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1.3 Outline

To answer the research question raised in this work, the following problems are pointed out:

• The quality of models for damage detection in civil engineering.

• The possibility of combining several available methods in a probabilistic framework to

assess a chosen inspection method for damage detection.

• The advantage of applying Meta-models to improve the performance of the developed

probabilistic framework.

• The influence of available measurements on the reliability of an inspection method for

damage detection.

The highlighted problems are discussed in 8 chapters. The first chapter gives the motivation and

presents the challenges related to the assessment of inspection methods for damage detection.

Also, the necessity of replacing physical models with numerical models is illustrated. The

principles of the developed methodology that have been used to solve the research question are

introduced.

The second chapter reports the state of the art related to damage types and damage detection.

An overview about damage simulation in numerical and physical models is given. Available tools

for reliability assessment of inspection methods to detect damage are introduced. Methods for

uncertainty quantification and model quality assessment existing in literature are mentioned.

The third chapter illustrates the proposed framework of the developed strategy. At first, the

problem definition as an essential step that leads to a proper application of the strategy is

presented. Then, the principles of designing experiments used in this work to detect damage

are demonstrated. A sensitivity analysis is pointed out as a quality assessment method for a

chosen design of the experiment. Considering the information provided by a measured response

to a developed framework using a Bayesian probabilistic approach is presented. A probability of

detection method will be presented as a global assessment tool of a chosen inspection method.

Also, the application of Meta-models to improve the efficiency of the strategy is demonstrated.

Moreover, the assessment of a vibration-based method for damage detection in a single degree of

freedom system is given. The example illustrates the application of each step of the developed

strategy in detail.

In the fourth chapter, a numerical application to a vibration-based inspection method for

damage detection is presented. Three degrees of freedom frame structure illustrates the

application of the strategy considering a multi-damage scenario and the influence of damage

location.



Outline 7

In the fifth chapter experimental studies are presented. The first example includes a one span

steel frame structure which is excited by several harmonic excitations. Releasing the hinges

at the ends of the beam are used as damage. The influence of considering different damping

models in the damage indicator on the reliability of the inspection method is investigated. The

second example presents a cantilever. The reliability of the inspection method is investigated

taking into account two different numerical models to represent the structure and the studied

damage.

In the sixth chapter, the strategy will be applied to a reference object as a real structure. The

reference object, which is one of the research training group (GRK1462) Bauhaus-Universität

Weimar research projects, contains a series of poles that will be used to carry the catenary

system of a new railway line. The poles were designed and manufactured to be identical. The

main objective of this example is to investigate the performance of a vibration-based inspection

method in case of detecting damage in identical civil engineering structures.

In the seventh chapter, the findings of the applications in chapters 4, 5 and 6 will be discussed.

The advantage and the limitation of the developed strategy are pointed out. Suggestions to

improve the obtained results are given.

In the eighth chapter, a summary of the work and general conclusions will be given. A proposal

for future topics is addressed.



Chapter 2

State of the Art

2.1 Damage

2.1.1 Damage and damage identification

Since damage is a general term that may refer to several meanings based on the discipline where

it is used, it is necessary to distinguish between damage in different engineering fields. Damage

in structural and mechanical systems is defined as changes to the material and/or geometric

properties of a studied structure including changes to the boundary conditions and system

connectivity, which adversely affect the system’s performance, for example, causing undesirable

stresses, displacements or vibrations, in present or future and influence its safety, Kiremidjian

et al. [1997], Di [2004], Rao and Ratnama [2010], Golubović-Bugarski and Blagojević [2010],

Inocente-junior and Mechbal [2010], Dackermann [2010], Stepinski et al. [2013].

Generally, damage detection was defined as an inverse problem that should be solved to identify

damage and its characteristics. Four damage identification levels were defined based on the

amount of information which a chosen inspection method provides. The damage identification

levels are given based on Rytter [1993] and Sinou [2009] as follows:

• Level 1: the determination of the presence of damage in the structure;

• Level 2: the determination of the damage location in the structure;

• Level 3: the quantification of the severity of the damage;

• Level 4: the prognosis of the remaining service life of the damaged structure;

Many previous studies considered damage classification (information about the damage type)

as an additional identification level.

8
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On the other hand, Stepinski et al. [2013] defined damage in structural health monitoring as an

imperfection, defect or failing which impairs functional and working conditions of engineering

structures. Using system analysis, where structures can be modeled as systems with input

excitations and output measurable signals, damage can be considered as an additional excitation

that results in energy flow and transformation, leading to modifications of output signals.

Basseville [2009] used words deviation, change, fault, and damage to reflect a change in the

parameter factor of a model of the monitored structure or system.

Generally, there are many challenges that should be considered in case of damage detection

in civil engineering structures, Sohn [1998], Sohn and Law [2000], for example, complicated

geometry and material properties, large size, which requires instrumentation with a large

number of sensors, and the influence of uncertainty due to environmental effects such as

temperature, traffic loading, humidity, etc.

2.1.2 Types of damage

Damage in civil engineering structures varies based on the structure type, applied forces,

material properties, surrounding environmental conditions, etc. In literature, many types

of damage have been investigated to introduce them in numerical or physical models. As a

result, the verification and validation of the developed damage detection methods could be

accomplished.

Shih [2009] presented an overview of some types of damage in bridges and possible loads that

cause damage. It was mentioned that damage in reinforced concrete (RC) structures could be

micro-cracking and concrete crushing, reinforcement bars yielding and bond deterioration at

the steel-concrete interfaces. On the other hand, cracks, loose bolts, broken welds, corrosion,

fatigue, aging, etc., can be possible damage types in steel structures. Yao et al. [2011]

mentioned that strong earthquakes could cause welding cracks in steel nodes in spatial steel

structures. Also, other local damages because of material corrosion, construction technology,

etc., were always easily ignored if the safety of the structures were evaluated. Zhou et al. [2010]

investigated stiffness reduction due to shear fractured fibers and delamination of a Carbon-

fiber-reinforced polymer (CFRP) damage types in a composite fuel tank. Di [2004] presented

examples related to linear and non-linear damage. The classification was based on a response

of a structure after damage. A crack that subsequently opens and closes under operating

vibration environment was given as an example of non-linear damage. It is mentioned that

most of the publications in the damage detection field were focusing on linear damage. The

focus of Argatov and Butcher [2011] was on bolted joints damage which could be caused by self-

loosening, shaking apart slippage, stress cracking of fatigue, and breaking because of corrosion.

Mattson and Pandit [2006] indicated that stiffness degradation could be due structural damage

such as cracks, loosened connections, corrosion, etc. Yan and Golinval [2006] investigated
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damage types related to loosening of connecting bolts of an airplane wing and fatigue in a street-

lighting device. Lam and Ng [2008] mentioned that many detection methods were developed

to detect damage such as cracks in beams, reduction in stiffness of structural members and

degradation of materials. Ng et al. [2011] mentioned that corrosion, crack, and delamination

can influence the guided waves if they are used in engineering structures to detect damage. Fang

and Perera [2011] pointed out that cracks in civil engineering structures influence the moment

of inertia (I) directly, but only minor changes in material properties such as the modulus of

elasticity (E) are expected. Meruane and Heylen [2010] studied multi-crack damage type that

can occur in a beam structure due to a static load. Park et al. [2010] used lamb wave to detect

surface cracks in a beam structure. Transportation Research Board [2006] gave an overview of

several types of cracks that can occur before and after hardening in concrete structures. The

cracks have been classified into different groups based on form, primary cause and the time of

appearance. For example, plastic settlement of concrete appears after 10 minutes to 3 hours

of casting, but sulfate attack needs between 1 to 5 years to appear. In composite materials,

transverse matrix cracking, fiber fracture, and delamination damage types can be observed. It

was mentioned that delamination is one of the most common types of damage in laminated

fiber-reinforced composites, Turon et al. [2006]. Transverse cracks are a characteristic damage

state caused by micro delaminations, Wittel et al. [2006]. Jimbo et al. [2012] indicated that

typical damage in bridges could be the failure or even damage in shear connectors in composite

structure elements due to corrosion, fatigue or unexpected overloading. Hegenderfer et al. [2012]

introduced loosening of bolts at a base connection of one column as a damage form. He and Zhu

[2011] mentioned that corrosion, cracks, fatigue, and loosening of bolted joints cause stiffness

reduction. In Golubović-Bugarski and Blagojević [2010], it was mentioned that damage in a

structure could be due to cracks, loose bolts, broken welds, corrosion, fatigue, etc. Marder

[1989] mentioned that creep defects cause the majority of failures in power plant components

operating under stress and thermal load. Wood [1989] distinguished between two types of flaws,

volumetric flaws which can be described by three dimensions and planar flaws which have two

main dimensions and the third dimension is neglected. For example, porosity, shrinkage, holes

and voids, corrosion thinning and corrosion pitting were considered as volumetric flaws. On

the other hand, plating cracks, fatigue cracks, stress-corrosion cracks and welding cracks were

considered as planar flaws. Wang [2010] indicated that honeycomb spaces or void type of

damage are commonly found in reinforced concrete structures. Honeycomb spaces in concrete

are spaces where concrete could not reach during and after casting in the structural elements

(for example beams and columns). An overview about the common damage type in structures

is presented in table 2.1.



Damage 11

Table 2.1: Studies on damage in concrete/steel/Composite structures

Damage description Concrete Steel Composite (excluding concrete)

Micro-cracking x x x

Concrete crushing x

Reinforcement bars yielding x

Bond deterioration at the steel concrete interfaces x

Loose bolts x

Broken welds x

Shear fractured fibers and delamination of a Carbon-

fiber-reinforced polymer (CFRB)

x

Delamination x

Creep x x

Volumetric flaws (porosity, shrinkage, holes and voids,

corrosion thinning and corrosion pitting)

x x x

Planar flaws (plating cracks, fatigue cracks, stress-

corrosion cracks and welding cracks were considered as

planar flaws)

x x x

Honeycomb or void x

2.1.3 Damage modeling

Damage modeling in numerical models

To utilize numerical models for damage detection, many numerical damage models have

been developed. Stepinski et al. [2013] mentioned that damage modeling could be classified

analogously to multiscale modeling methods as single and multiscale models. It was mentioned

that in the first group, structural damage could be caused by the material’s degradation or other

phenomena causing the material to lose its load-carrying capabilities. However, multiscale

damage modeling concerns the evaluation of microstructural changes and up-scaling their

influence on the macro scale which allows for more precise results. Worden and Friswell [2009]

mentioned that modeling cracks fall into three main categories: local stiffness reduction, discrete

spring models, and complex models in two or three dimensions

The most popular damage models are based on modifying the initial values of the material

properties or geometry to represent an equivalent impact of a chosen damage type. For example,

a crack in a beam structure was modeled by a non-dimensional flexibility parameter which

depends on the depth of a simulated crack. The damage parameter was introduced in one of

the boundary conditions of a Bernoulli Euler beam structure, Lam and Ng [2008]. In Ng et al.

[2011] damage was introduced in a semi-infinite beam structure by reducing the cross-sectional
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area of an element where damage was located. Reducing the elastic modulus value of beam

elements has been used to model a damage type in a lightning mast numerical model in He and

Zhu [2011]. In the same work, another damage type was modeled by reducing the shear moduli

of solid cylinders corresponding to loosened bolted connections in a space frame structure. Fang

and Perera [2011] reduced section inertia of damaged elements to model a damage type in a

beam element. In Nair et al. [2006] and Krishnan Nair and Kiremidjian [2007] removing braces

which had no flexural stiffness was used to simulate damage in a benchmark frame structure.

In Wu and Li [2006] changing cross-section areas of braces was used as a damage model in a

benchmark steel structure. A damage model based on reducing Young’s modulus value of beam

material to reduce the stiffness was proposed by Chandrashekhar and Ganguli [2009]. In Zabel

[2002] damage was simulated by reducing a stiffness parameter together with an increase of a

damping parameter of a 5 degree of freedom studied system. In Yao and Pakzad [2012] damage

was simulated by reducing the stiffness of a spring in a 4 degrees of freedom mass-spring-damper

studied system. Zhang et al. [2011] assumed that local structural damage is attributed to a

change of structural stiffness parameters. In Fang et al. [2005] structural damage was simulated

as stiffness loss in one or multiple elements. A damage type was modeled in a carbon fiber

reinforced rectangular epoxy plate by reducing the stiffness of some elements. Perera et al.

[2009] assumed that no alteration in mass occurred before and after the damage was observed.

Therefore, the parametrization of damage has been represented by a reduction factor or damage

index of an element bending stiffness. Kranock [2000] indicated that a linear damage type was

modeled as an additive change in stiffness matrix. However, it was mentioned that damage

influences a member ability to resist deformation under a load, but it should not change the

joints that a member was connected to, nor the way that member was connected to those joints.

To model nonlinear damage, a stress-strain curve was modified together with changing stiffness.

Reddy and Swarnamani [2012] simulated damage in a studied plate by reducing the thickness

of one element. Agosto [1997] investigated damage modeling in mathematical models of a

cantilever and a simply supported beam by comparing results from a single and multi-degree

of freedom systems.

Another type of damage models is based on using spatial elements to represent the influence

of a damage type. For example, in Hegenderfer et al. [2012] a rotational spring was used to

model the characteristics of a damaged beam, and damage was described using two parameters:

location and magnitude. A similar model has been used by Yao et al. [2011] to simulate

damaged supports, which were modeled as elastic elements, by reducing rotation stiffness.

Linear damage functions, defined in the same way as shape functions were used in finite element

theory, have been used by Perera and Ruiz [2008]. Zhang [2007] emulated damage by adding

a zero-length element between two connected elements, where assumed damage is located.

The vertical bending stiffness of the zero-length element was reduced to represent damage.

Wittel et al. [2006] discussed discrete element approach models for various composite materials

and demonstrated their capabilities to describe the damage and multiple failures. Di [2004]
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proposed damage-detection-oriented models for two typical damage patterns in a plate-like

structure which are crack and delamination. Ostachowicz and Krawczuk [2009] reviewed the

existing models used for analyses of the influence of fatigue cracks and delaminations on changes

in dynamic characteristics of structural elements. Continuous, discrete-continuous, and discrete

models were presented.

To develop more accurate damage models, complex numerical models of a studied structure

are required. As a result, only simple or limited parts of structures have to be modeled to

avoid expensive computational effort. For example, Kögl et al. [2004] employed quarter-point

elements placed circularly around the crack tip to model a simple rectangular slab with a single

crack of a specific orientation. A generic mesh has been used to model straight interior cracks of

arbitrary orientation in 2D slabs of arbitrary geometry. Dackermann [2010] modeled a saw-cut

in a three dimensions steel beam by rectangular openings from the soffit of the beam. The mesh

density was refined in the vicinity of the defect. Most and Bucher [2007] modeled growing crack

discontinuities in concrete by combining a meshless interpolation scheme with finite elements

to reduce computational cost. An overview about modeling a crack damage type in reinforced

concrete beams was provided by Wang [2010]. Moreover, more complex damage models can

be developed using multi-scale modeling approaches. More examples can be found in Worden

and Friswell [2009]. An overview about the common damage models in numerical models is

presented in table 2.2.
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Damage modeling in physical models

Many physical damage models have been developed and introduced in global physical models

of the structures. As in numerical models, most of those artificial damage models were intended

to represent the influence of a chosen damage on a studied structure.

Cutting process has been often used to represent damage in physical models. For example, He

and Zhu [2011] introduced damage in a scaled lightning mast by machining cross-sections that

represent the corresponding stiffness reduction where damage was located. Choi et al. [2007]

modeled damage as a rectangular opening with certain dimensions from the soffit of a timber

beam to reduce the moment of inertia. Ratcliffe [1997] modeled damage in a flat steel beam

by cutting a through-thickness slot in the middle, across approximately half the width which

introduced a stiffness change, with minimal effect on the mass of the plate. Rao and Ratnama

[2010] introduced damage by cutting a slot in the weld of two welded plates. The slot was done

by an electrical discharge machining. Golubović-Bugarski and Blagojević [2010] simulated

damage in a beam by a cut at a certain location. The propagation of damage was represented

by deepening the cut by 1 mm at every level. Similarly, a cut has been used as a damage model

in an aluminum beam by Inocente-junior and Mechbal [2010]. Zhang et al. [2011] modeled

local artificial damages of a studied frame by replacing three intact steel tubes with damaged

ones. Two types of damage were considered. The type-1 was a perforated slot cut in the

central length of a tube, and the type-2 was a removal of a layer of material from a surface of a

tube. In Zabel [2002] a local structural damage type was simulated by cutting the beam’s lower

flange of a steel beam five times at two positions. Jimbo et al. [2012] referenced to experiments

where damage corresponds to a symmetric notch of increasing depth induced by saw-cutting

one end-connector of a composite beam. Kumar et al. [2012] introduced several damage levels

in a lightly reinforced concrete beam by first cutting off a beam up to the cover, then cutting up

to neutral axis without cutting the reinforcement in tension portion and finally cutting of the

reinforcement also in tension portion. In the SIMCES project (System identification to Monitor

Civil Engineering Structures) several damage scenarios were introduced in the full-scale Z24

bridge in Switzerland such as pier settlement, Maeck and De Roeck [1999], Basseville et al.

[2007].

Other damage models based on removing some parts from a studied physical model have been

used. For example, in He and Zhu [2011], a space frame structure was damaged by loosening an

upper bolted connection of a diagonal beam. Yan and Golinval [2006] and Meruane and Heylen

[2010] created damage by removing connecting bolts on the right-hand side of the wing of an

airplane model. Similar damage model was used by Hegenderfer et al. [2012] where bolts at

the base connection of one column were removed. In Nair et al. [2006], damage in a benchmark

frame structure was simulated by removing braces in various combinations, resulting in a loss of

stiffness. Similar damage model was used by Wu and Li [2006] in a benchmark steel structure.
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Indirect damage modeling using external loads has been used to introduce cracks in reinforced

concrete structures. For example, Fang and Perera [2011] studied a crack damage type which

caused by applying a static load at the middle of a beam of a frame structure. In Zabel [2002],

structural damage in a simply supported reinforced concrete beam was caused by incrementally

increased static loading. Meruane and Heylen [2010] applied a similar criterion to produce two

different damaged zones at non-symmetrical locations in a concrete beam. Similarly, Perera

et al. [2009] modeled damage in a one-story and one-bay RC frame structure by increasing static

concentrated load at the midspan of a beam to gradually introduce cracks into the specimens.

Other special damage models can be found in the literature. For example, Mattson and

Pandit [2006] tested a damage detection method on data sets obtained from a test using a

LANL (which stands for Los Alamos National Laboratory) damage-simulation test-bed where

a damage type such as open-close crack was introduced by installing bumpers that limit the

relative motion between two adjacent masses of the device. Uchida et al. [1992] induced fatigue

damage experimentally by constant strain cyclic deformation. In a spatial steel structure scaled

model studied by Yao et al. [2011], damaged supports were created using a seismic simulation

shaking table. In Yao and Pakzad [2012] two 20.4 kg disks were added to the mid-span of

a truss structure to approximate a loss of stiffness in a studied system. In the same work, a

two-span reinforced concrete bridge model was progressively damaged during various low-to-

high amplitude level earthquake excitation tests, all of which were from the 90 degrees and 180

degrees components of the Century City Country Club North record from the 1994 Northridge,

California earthquake. Kranock [2000] inflicted damage on a four-bay truss via a device called

a Variable Stiffness Truss Member (VSTM), designed by the University of Colorado. By this

device, it was possible to reduce the stiffness of the member by one-sixth each time one of

the rods was melted, without applying any unmeasured external forces to the truss. Basseville

et al. [2003] introduced damage in a reticular structure containing six cylindrical bars connected

in 4 spherical joints through screwed bolts at the laboratory by unscrewing one of the joints

to generate several levels of stress before simulating a total collapse by completely unscrewing

a joint. Dackermann [2010] introduced damage in a two-story steel frame by modifying the

connection condition of a beam-column joint. Another damage scenario was investigated by

adding masses to crossbeams in different locations. An overview of the common damage models

in physical models is presented in table 2.3.
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2.1.4 Damage detection inspection methods

To detect damage and identify its characteristics, an inspection method should be chosen.

Many inspection methods have been developed for damage detection in engineering structures.

Inspection methods can be classified based on several criteria. For example, global and local,

model-based methods and data-based methods (Signal-based), vibration-based traditional and

modern (non-traditional) methods, or real-time and non-real-time methods.

Global inspection methods attempt to simultaneously assess the condition of the whole

structure, especially large and complicated structures, whereas local methods focus on non-

destructive evaluation tools on specific structural components. Vibration-based global methods

assess the variation of vibrational characteristics under specific loads.

Local inspection methods monitor a small area of the structure surrounding the sensor (sensors)

using measurements of structural response to certain applied excitation, Stepinski et al. [2013].

However, for large and complicated structures in the invisible or closed environment, it is

complicated to detect damage using a local damage detection method, because they can only

be used to inspect some special and accessible components of a structure. Moreover, they

require prior knowledge about damage location.

Vibration-based traditional inspection methods refer to methods that utilize some characteris-

tics of a structure to detect damage, for example, natural frequencies, modal damping, modal

strain energy or mode shapes, etc. However, modern inspection methods have been used for

structural damage based on online measured response signals of structures in service. These

methods use modern signal-processing techniques and artificial intelligence such as wavelet

analysis and neural network as analysis tools.

In model-based methods, a mathematical model is developed to understand the structural

behavior and to establish correlations between specific damage conditions and changes in

structural response. Shih [2009] indicated that the main disadvantage of model-based methods

lies in the fact that the physical parameters obtained from an updating procedure may be

unrelated to the actual damage scenarios. With non-model-based methods, it could be possible

to detect damage without prior knowledge of the model of a structure. Yuen [2010] mentioned

that most existing global structural health monitoring methods use dynamic model updating

to determine local loss of stiffness by minimizing an objective function between experiments

and a FE model.

Many factors influence the result of an inspection method such as damage type, structure type,

experimental setup, post-processing outcomes by means of different damage indicators, etc.

More information about different inspection methods and their classifications can be found in

Rytter [1993], Doebling et al. [1996], Kiremidjian et al. [1997], Kranock [2000], Di [2004], Fang

et al. [2005], Yan et al. [2007], Sinou [2009], Shih [2009], Golubović-Bugarski and Blagojević

[2010], Wang [2010], Haghighi [2010], Dackermann [2010], Stepinski et al. [2013].
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Most of the developed inspection methods have been employing damage indicators based on the

modal parameters of a studied structure. For example, Ratcliffe [1997] developed a technique

which required applying a finite difference approximation of Laplace differential operator to

mode shapes of a damaged structure. No a priori knowledge of the undamaged structure

was required. Maeck and De Roeck [1999] developed a damage detection and quantification

method based on the direct determination of stiffness based on mode shape curvatures. The

method was intended to be an alternative to damage identification by updating a numerical

model of a studied structure. Ahmadian et al. [2000] developed two damage indicators based

on mode shapes to localize damage. The undamaged substructure was identified based on

an idea that higher modes will not participate in the deflections of undamaged substructures.

The proposed method used measured displacements from a structure and predictions from a

mathematical model. Khiem [2006] applied an inverse problem method to detect a crack in a

structure. The method was based on constructing a dynamic stiffness model of a cracked frame

structure. Natural frequencies, obtained from a modal test, were formulated and solved using

a nonlinear programming method. Perera and Ruiz [2008] developed a multistage scheme for

damage detection for large structures. The scheme based on experimental modal data gained by

accelerometers and on finite element model updating methods. An objective function was based

on modal flexibility, and another objective function depended on mode shapes and frequencies,

combined to be depended on damage location, was formulated.

Shih [2009] developed a multi-criteria procedure for damage assessment of structures by

combining natural frequencies, modal flexibility and modal strain energy between healthy and

damaged structures. Perera et al. [2009] presented an identification algorithm for assessing

structural damage considering differences between frequencies and mode shapes before and

after damage. The algorithm was based on a finite element updating procedure and took a

modeling error into account. Wang [2010] proposed a new modal strain energy based damage

detection method based on the assumption that most damage will result in an equivalent

stiffness change, other than the geometric property changes. The improvement was made by

normalizing mode shapes curvature. The method was developed mainly for reinforced concrete

structures. Tomaszewska [2010] studied the influence of a modal identification error on damage

detection using damage indicators based on modal curvature and structural flexibility. He and

Zhu [2011] investigated forward and inverse problems in damage detection and localization

using natural frequencies’ variation as a damage indicator. Fang and Perera [2011] presented a

damage identification method based on a response surface based model updating. The response

surface was developed using D-optimal designs, which are experimental designs generated from

a computer algorithm, which require a minimum number of numerical samples. Physical

properties such as Young’s modulus and section inertia were chosen as inputs and modal

frequency as an output. Jimbo et al. [2012] proposed an inverse problem-based method

for damage detection based on finite spectral data associated with a given set of boundary

conditions. A cost function which includes eigenvalue data and transversal displacements
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of eigenfunctions have been used. The procedure was tested on a composite beam with

different damage scenarios. Di [2004] combined both damage indices formulated based on modal

flexibility and its derivatives with a model-based updating method to improve the efficiency

and the reliability of damage detection. More information related to inspection methods based

on the dynamic properties of a studied structure can be found in Worden and Friswell [2009].

Many inspection methods based on frequency response functions properties have been used as a

damage indicator. For example, Araújo dos Santos et al. [2005] presented a frequency response

functions’ sensitivities based technique for damage detection. It was mentioned that better

identification results were obtained in lower frequency ranges. Fang et al. [2005] developed

a methodology for structural health monitoring to determine the location and the severity of

crack damage by establishing an input-output relation between frequency response function

characteristics of both an intact and a damaged structure, and damage location and severity

using a neural network. Golubović-Bugarski and Blagojević [2010] present a method which

uses frequency response functions as characteristics of the dynamic response of a mechanical

system to detect damage. Dackermann [2010] proposed two artificial neural network vibration-

based damage detection methods. The first was based on a damage index and the second was

based on directly measured frequency response functions data. Reddy and Swarnamani [2012]

investigated the effectiveness of a frequency response function curvature energy damage index

to detect and localize damage.

Instead of studying changes in the frequency domain to detect damage, both frequency and time

domains can be investigated by using wavelet transformations. Taha [2006] presented the state

of the art of the application of wavelet transformations into structural health monitoring. Zabel

[2002] investigated the sensitivity of a wavelet-based first level damage indicator for damage

detection in reinforced concrete structures considering impulse response wavelet coefficients’

energy components. Zhu et al. [2011] analyzed accelerations of a structure under impact loads

and developed a novel damage indicator based on wavelet packet transform.

Other methods based on state space representation have been used. Basseville et al. [2003]

proposed a damage detection method based on a residual generated from a subspace-based

covariance-driven identification method and on the local statistical approach.Basseville et al.

[2007] presented an overview of the theory and the practice of damage identification methods

based on input/output and output-only subspace identification algorithms. Inocente-junior and

Mechbal [2010] presented a methodology for structural health monitoring based on subspace

identification and residue generation.

Statistical approaches were used to develop damage indicators based on statistical properties

of measured time histories. For example, Worden and Manson [2000] utilized a Kernel

Discriminant Analysis (KDA), which was based on a statistical technique, to classify

acceleration data recorded from a ball bearing in five different states: a healthy condition

and four distinct damage states. Fugate et al. [2001] used residual errors, which were
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obtained after using an auto-regressive model to fit measured acceleration-time histories from

an undamaged structure, as a damage indicator. Yan et al. [2005] presented a principal

component analysis based method for damage detection during the monitoring of a structure. A

residual error was used as a statistical damage indicator. Mattson and Pandit [2006] proposed

that an estimate of an auto-regressive model residual series standard deviation together with

a repeatable threshold level can be used to identify and localize damage without explicit

knowledge of an undamaged structure. Yan and Golinval [2006] presented a method based

on subspace identification concepts and statistical process techniques to detect small-sized

structural damages. The influence of artificial or environmental vibrations on output-only

acceleration time histories was considered. Zhang [2007] presented a 4-step statistical damage

identification scheme for bridge health monitoring using acceleration as a structural response.

Krishnan Nair and Kiremidjian [2007] modeled acceleration time histories using auto-regressive

moving average (ARMA) processes. As a result, a feature vector was obtained and modeled

using Gaussian Mixture Models. The Mahalanobis distance between the mixture in a damaged

and a baseline (undamaged) was used as an indicator of damage extent. Rao and Ratnama

[2010] demonstrated an approach for health monitoring of structures to identify damage using

acceleration-time data obtained from piezoelectric accelerometers by combining time series

autoregressive models and exponentially weighted moving average (EWMA) control charts.

de Lautour and Omenzetter [2010] used an Artificial Neural Network to classify damage cases

or estimate remaining structural stiffness by training it using the coefficients of auto-regressive

models used to fit acceleration time histories. Haghighi [2010] proposed a multivariate auto-

regressive models based method to extract damage features from vibration responses measured

at multiple sensor locations. Yao and Pakzad [2012] proposed to use model spectra and a

residual auto-correlation, together with resampling-based threshold construction methods to

improve the performance of statistical methods based on using auto-regressive models. The

statistical models have been used to represent simulated and real acceleration data. More

information about statistical based inspection methods can be found in Basseville [2009]

Probabilistic approaches have been used to develop damage detection frameworks. For example,

Sohn [1998] developed a probability-based framework using a Bayesian probabilistic approach

for global damage detection in case of continuous monitoring of a structure. The most probable

damage event was obtained by comparing relative probabilities for different damage scenarios.

The difference between analytical and experimental vibration properties was used to estimate

relative posterior properties. A nondimensional parameter was used as damage indicator.

A structure was considered damaged if a value of the defined damage indicator was less

than a predefined threshold. Wu and Li [2006] proposed a two-stage eigensensitivity-based

finite element model updating procedure for structural parameter identification and damage

detection. The procedure is based on combining both weighted least squares and Bayesian

estimation methods to identify beam-column joints stiffness and Young’s modulus of a studied

structure. Then, the same procedure was applied after introducing damage to the structure to
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detect damage. Yuen et al. [2006] presented a Bayesian system identification based probabilistic

method for damage detection in a structural system considering noisy, incomplete inputs and

response measurements. Data obtained from initial undamaged and damaged states of a studied

system was used to compute the probability of damage of various levels in specified locations.

An approximation was used to represent a conditional probability density expansion of updated

probability functions of studied input parameters. Zhang et al. [2011] proposed a probabilistic

method to identify damage of structures with uncertainties under unknown input. A damage

index was obtained from the statistical parameters of physical parameters of the intact and

damaged structure. Hegenderfer et al. [2012] utilized modal analysis and Bayesian inference

model calibration techniques to detect connection damage in steel frames. A developed finite

element model was calibrated against experimental data using natural frequencies. Ng et al.

[2011] proposed a two-stage optimization strategy using a Bayesian statistical framework to

present a model-based probabilistic damage characterization methodology for beams using

guided waves. Chandrashekhar and Ganguli [2009] applied a probabilistic analysis to develop

a robust fuzzy logic system with new fault isolation (sliding window) technique for damage

detection. A Monte Carlo Simulation was used to calculate statistical properties of the variation

in natural frequencies including material properties’ uncertainty. Simoen et al. [2013] applied

Bayesian calibration techniques to quantify uncertainty in case of progressive damage of a 7-

story structure.

Other methods and damage indicators have been used in case of special problems. For example,

Uchida et al. [1992] applied a positron annihilation lineshape analysis method to detect fatigue

damage in different types of steel. Kranock [2000] presented damage detection filters, which

were model-based observers, as an alternative to other global methods for structural health

monitoring. Futakawa et al. [2004] conducted acoustic vibration measurement to investigate

the correlation between erosion damage and acoustic vibration in an electric Magnetic Impact

Testing Machine. Kögl et al. [2004] presented a transient finite element calculation based

approach to detect cracks in concrete slabs using a Fast Fourier transform analysis. Lauwagie

et al. [2002] compared the modal parameters of an undamaged beam to the vibration behavior

of the beam subjected to controlled damaging. Scanning Laser-based equipment was used

to measure the response of the beam. Meruane and Heylen [2010] implemented a real-coded

parallel Genetic algorithm, which is a Genetic algorithm based on real number representation,

to detect structural damage based on modal data. Boonlong [2014] proposed a cooperative

co-evolutionary genetic algorithm for an optimization problem with a large number of weak

coupling decision variables for damage detection. Shi et al. [2010] employed a mature computer

vision technology to capture a static deformation profile of a structure. Profile analysis methods

were applied to detect locations of damage. Kumar et al. [2012] presented an algorithm for

damage detection in lightly reinforced concrete beams based on changes in the power spectral

density of the measured acceleration. Bastani et al. [2012] applied an adaptive linear prediction

model, which was developed using data from an undamaged structure, for damage detection.
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Tables 2.4 and 2.5 present an overview about the inspection method for damage detection.
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2.2 The reliability of an inspection method

2.2.1 Reliability

Generally, reliability refers to the probability that a system performs successfully without failure

for a specified period. Reliability has been used in different engineering disciplines. For example,

risk analysis, environmental protection, quality assessment, optimization of maintenance and

operation, engineering design, verification of quality/reliability, etc. The principles of reliability

and its applications were presented in Rausand and Høyland [2004].

The reliability and the quality of several inspection methods in case of civil engineering

structures were inspected by Rytter [1993] considering nine critical issues:

1. usability for global inspection;

2. requiring cleaning;

3. sensibility to measurement noise;

4. ability to stand alone;

5. detection of internal defects;

6. detection of defects far away from the sensors;

7. detection of defects in areas with one surface accessible;

8. detection of defects in areas with two surfaces accessible;

9. estimation of the size and location of the defect.

Based on that evaluation, Rytter [1993] found that vibration monitoring is one of the promising

methods that can be used to detect damage in civil engineering structures.

2.2.2 Design of experiments

Generally, in the case of civil engineering structures, geometry, boundary conditions, and

physical phenomena are so complicated that it is sometimes beyond the present technical

capabilities to formulate satisfactory analytical or numerical models and approaches. In this

case, experiments are necessary to gain more information about studied system behavior,

Coleman and Steele [2009]. Structural health monitoring (SHM) and nondestructive testing

(NDT) have often been used to describe the process of nondestructively evaluating a structural

condition. The difference between SHM and NDT is that SHM requires a global and on-line
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implementation of various damage detection technologies, which require periodically spaced

measurements while NDE is commonly applied offline and locally in regions of expected damage,

Staszewski and Worden [2009]. To reach the objectives of a SHM or an NDT, it has to be

designed to obtain useful information about the system under investigation. For this reason,

many questions should be addressed when a test has to be designed. These questions are

related to many factors that influence the designed test, for example, goals, accuracy, physical

principles, type of tests, tested variables, measured outputs, type of instruments, measurement

points, limitation of the test, reporting result, etc.

The reliability of an inspection method depends directly on a chosen design of experiment

(DOE). DOE for vibration-based methods includes a wide range of problems that should be

taken into account before conducting experiments. For example, type and location of sensors,

technical issues related to cables and acquisition systems, time of the acquisition and frequency

rate, preparing specimens, etc. Moreover, each inspection method can have some special

properties which lead to a different or unique DOE.

Rytter [1993] introduced a step by step strategy to perform a vibration-based inspection. In this

strategy, the designing and planning of the measuring program are based on the results from

sensitivity analysis. The primary objective of the sensitivity analysis is to choose the damage

indicators that can detect damage in the selected areas of a structure. It was mentioned that it

is important to include all potential not damage depending variation of the structural properties

during the sensitivity analysis.

Although DOE was not mentioned explicitly, many previous studies investigated the influence

of test arrangements on damage detection. For example, Araújo dos Santos et al. [2005] studied

the effect of the number of frequencies and mode shapes, frequency range, number of sensors

and excitation location on damage detection using a vibration-based method. Park et al.

[2010] proposed a method to achieve a tradeoff between data transmission rate in wireless

sensors and damage detection capability based on wavelet coefficients. Shih [2009] provided

an overview of the functionality of different types of sensors and the types of excitations that

can be used for structural health monitoring. Yan et al. [2007] mentioned that selecting an

optimal number and optimal positions of sensors to obtain full information related to structural

damage to be detected is a very important factor. Kiremidjian et al. [1997] indicated that

the conceptual design of a civil, structural damage monitoring system was based on a simple

hierarchical scheme consisting of three distinct but interrelated levels: sensor, structure and

central monitoring facility. Moreover, a robust, an efficient, and economic damage detection

system critically depend on the information extracted from sensors. However, due to economic

constraints, it is impossible to completely instrument civil structures for damage monitoring.

Reddy and Swarnamani [2012] investigated a relationship between a developed damage index

and a considered frequency range (bandwidth) to provide further information about the choice

of optimum frequency range response analysis. Moreover, the influence of the excitation location
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for damage detection was considered. Kögl et al. [2004] indicated that the detection of cracks

depended upon the type and frequency of excited vibrations. Sohn [1998] indicated that load-

dependent Ritz vectors were more sensitive to damage than corresponding modal vectors. As a

result, careful selection of excitation can lead to better damage detection. Billmaier and Bucher

[2013] applied a selective sensitivity approach to obtain a structural response which is sensitive

to a certain group of parameters and insensitive to others. As a result, the ill-posed problem can

be solved when a model updating procedure is applied to estimate the required parameters.

Reaching this goal required using selective, sensitive excitations. It was indicated that the

application of periodic excitation time series leads to reliable and stable results. Friswell et al.

[1997] investigated the relationship between the best selection of subset parameters that should

be updated and damage location identification. The study was based on an idea that the main

difference between model updating and damage/error location was that in damage location

only a limited number of parameters were likely to be in error. A finite element model was

used to model several damage scenarios.

Since one of the objectives of designing experiments is to estimate the optimal location

and the number of sensors, Yuen [2010] investigated this issue to enhance the quality of a

model parameter estimation. It was mentioned that the amount of information depends on

the sensor configuration. Although the main goal was to be more informative about the

condition of a structure, it was not always good to search for the most optimal configuration

because it can be computationally prohibitive and not robust. On the other hand, the

suboptimal configuration can be more robust. Papadimitriou and Lombaert [2012] studied the

influence of spatially correlated prediction errors on the optimal sensor locations for parameter

estimation. The information entropy, which was built from the parameter uncertainty identified

by applying a Bayesian identification framework, was used as a performance measure of a sensor

configuration. A forward and backward sequential sensor placement was introduced to select a

sensor configuration that minimizes the information entropy. It was concluded that an optimal

sensor location design depends on the type of parameters considered for estimation. Also, the

spatial correlation of the prediction error tended to shift a sensor away from the existing sensor

location.

Stepinski et al. [2013] mentioned nine major steps required for designing a structural health

monitoring system:

1. Choosing the type of damage that should be detected;

2. Choosing an output which is sensitive to a chosen damage;

3. Developing method algorithms;

4. Method simulation;

5. Laboratory validation;
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6. Testing the method on a chosen structure;

7. Testing the system performance using the probability of detection;

8. Checking the implementation and the operation of the system;

9. The installation and operation phase.

Moreover, it was mentioned that a sensitivity analysis of a structure’s response to damage

accuracy is a basic tool which helps to design a monitoring system. Furthermore, an overview

related to designing a structural health monitoring system was provided by Kiremidjian et al.

[1997].

In case of local inspection methods for NDT, the U.S. Department of Defense published

a handbook as inspection guidance for more reliable NDT in 1999. The handbook was

updated in 2004 and 2009 MIL-HDBK-1823A [2009]. This handbook gives detailed guidance

about experimental design of the most popular local inspection methods to obtain a reliable

probability of detection curves, for example, Eddy current test system, Fluorescent penetrant

inspection test system, etc. Generazio [2009] presented a design of experiment tool for validating

probability of detection curves. The tool was based on the application of the binomial

distribution to a set of discontinuities that have been grouped into size classes, where each

class has a width.

2.2.3 Probability of detection

Nondestructive testing (NDT) has been used in different fields and for many purposes. Rummel

and Matzkanin [1997] presented the application of NDT to general industrial process control,

general exchange in commerce and to maintenance purposes among other fields. Recently, NDT

has been applied in civil engineering research and applications. This arises from the need of

evaluating the reliability of the structures and determining their continuing service beyond a

designed lifetime. A review of the development of NDT reliability assessment between 1970

and 2000 can be found in Singh [2000].

Statistical approaches have been applied to assess the reliability of an NDT using performing

tests several times on a large number of specimens. The specimens should be divided into

several groups. Each group has a certain size of the damage. Finally, the probability of damage

detection (POD) curves were computed and used to check the reliability of an NDT. The

analysis of statistical data to obtain POD curves in both hit/miss and signal response methods

were explained in detail by Berens and Hovey [1981] and Berens [1989]. Different examples

related to applications and limitations of this approach in different fields were presented in

Petrin et al. [1993] as well as by Rummel and Matzkanin [1997], Georgiou [2006], Müller

et al. [2006] and Gandossi and Annis [2010]. Furthermore, many studies have been performed
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to investigate the reliability of POD curves as an assessment tool. For example, the influence of

different factors on POD curves which were estimated using a hit/miss method was discussed

in Annis and Gandossi [2012].

Calculating reliable POD curves need a large number of specimens and experiments which can

be costly and time-consuming. For most civil engineering applications such investigations are

impossible due to the uniqueness of the systems. However, recently, the statistical methods

have been supported by a new tool that makes their applications more practical, simpler and

less expensive. This tool is called Model-Assisted method, Knopp et al. [2006], Thompson

et al. [2009], Mandache et al. [2011], Stepinski et al. [2013] where numerical models have been

developed to estimate POD curves.

Another method to compute POD curves was presented in Guo et al. [2011]. The developed

method which is called truncated logistic regression method was based on using a model to

combine different nondestructive evaluation (NDE) measurements into one optimal POD curve

and to overcome the uncertainties introduced by naturally occurring flaws and to cancel out

the influence of lacking knowledge of undetectable flaws.

Several probabilistic models have been proposed to fit the variation of measured data and

estimate POD curves. For example, Lockheed, Probit, Log Probit, Log Odds, Arcsine, etc. It

was found that Log Odds and Log Probit had better performance than other models for most

applications, Stepinski et al. [2013].

To evaluate an inspection method for damage detection at least two of four different probabilities

should be used. Generally, the probability of detection and the probability of false alarm have

often been used to perform the evaluation. The probability of detection (POD) refers to the

probability that an inspection system detects damage when it is present, the probability of false

alarm (PFA) or probability of false positive (PFP) refers to the probability that an inspection

system shows that there is damage when it is not, Stepinski et al. [2013]. The probability that

an inspection system fails to detect damage when it is present (1-POD) and the probability

that an inspection system shows that there is no damage where there is none (1-PFP) were

rarely used.

2.3 Model quality

2.3.1 Models

A Model is a description of a specific physical phenomenon including geometrical, material,

initial, and boundary data, Thacker et al. [2004]. Generally, models are imperfect abstractions

of reality for specific purposes, and the usefulness of a model is based on its accuracy and

reliability, Loucks et al. [2005]. Therefore, understanding the physical problem is the most
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important for modeling, Yuen [2010]. As a result, a conceptual model can be developed based

on this understanding. In the next step, the conceptual model should be transformed into an

experimental model and/or a mathematical model. A mathematical model is represented by

equations containing known and unknown parameters. Mathematical models can be classified

into different categories. For example, linear and nonlinear, static and dynamic, black box

and white box, etc. Models can also be classified as physical-based models. Physical-based

models have been developed based on a physical behavior of a studied system, for example,

laws of mechanics, continua models, etc. Non-Physical-based models have been developed to

fit available data such as Semantic models, Meta-models, Probabilistic models, etc., Ciloglu

[2006].

Mathematical models are the backbone of computational models. Computational models can

be analytical models or approximated models based on a discretization method such as a

Finite Element method. As a result, a model can be implemented and solved by available

computational effort.

An experimental model can be developed based on the conceptual model to conduct

experimental tests to gain more knowledge about a studied system. An experimental model

can be a part of a studied structure or a scaled model at the laboratory.

2.3.2 Uncertainty

Thacker et al. [2004] defined uncertainty as a potential deficiency in any phase or activity of

modeling or an experimentation process that is due to inherent variability or lack of knowledge.

The process of characterizing uncertainty is called uncertainty quantification. Uncertainty

quantification is essential for further investigations such as damage detection, Yuen [2010].

Coleman and Steele [2009] used the word uncertainty to describe the degree of goodness of

measurement, experimental result or analytical (simulation) results. The degree of goodness

describes how well the model results match the data.

In literature, uncertainty can be aleatory or epistemic. Aleatory uncertainty represents a

random behavior of a phenomenon. Generally, aleatory uncertainty cannot be reduced.

Epistemic uncertainty is due to the lack of complete knowledge about a phenomenon. Epistemic

uncertainty can be reduced by doing more investigations. More information about this topic

can be found in Thacker et al. [2004], Shih [2009], Reuter [2012], Most [2011].

Generally, many random phenomena cannot be predicted precisely, Loucks et al. [2005].

However, ignoring such random phenomena is ignoring reality. There are many ways to deal

with uncertainty. For example, using a mean or median value or use critical values to represent

the worst case. Another approach to represent uncertainty is using a probabilistic model which

is employed to perform an uncertainty analysis to obtain a probability distribution of model
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outputs.

There are many sources of uncertainty in case of damage detection. For example, Law et al.

[2001] indicated that if the number of measured degrees of freedom is significantly smaller

than the number of the degrees of freedom of the analytical model, then severe degradation of

accuracy in model updating and damage detection is expected. Araújo dos Santos et al. [2005]

demonstrated that for small damage, measurement errors due to noise and other uncertainties

have the primary influence on the identification quality. However, in the case of massive damage,

if measurement data was not sufficient, damage could not be detected. Yan et al. [2007]

mentioned that in practice collectible sample data of structural damage was always insufficient

and limited. Moreover, structural damage detection is a complex problem since there are still

a lot of difficulties in the practical application of inspection methods because of the complexity

of structural damage and the uncertainty of various influencing factors. Chandrashekhar and

Ganguli [2009] invigilated the influence of material properties’ uncertainty on frequency as

an evaluation damage parameter. Perera et al. [2009] indicated that modeling errors in a

baseline model whose effects exceed a modal sensitivity to damage were critical and made an

accurate estimation of damage impossible. Meruane and Heylen [2010] considered initial errors

in a numerical model when a genetic algorithm is used for damage detection. False damage

detection was avoided by using damage penalization.

Yuen [2010] mentioned that a lot of assumptions were considered when a model was developed.

For example, a building with relatively uniform properties over the height can be simplified

as a continuous beam with its structural properties distributed uniformly along the length,

considering that only low order modes contribute to a model response, neglecting the shear effect

in slender buildings, assuming that a dynamic behavior is well approximated by linear dynamic

models, etc. Moreover, it was mentioned that not only damage is affecting the health of the

structure but also different factors such as temperature and relative humidity. An example was

given to demonstrate the influence of the temperature on the fundamental frequency of the 22-

story structure which was monitored for six months. The monitoring shows that the variation of

the fundamental frequency because of temperature can reach 13%. Also, the uncertainty of the

measured data due to aliasing and leakage, short duration of measurement and insufficient data

should be considered. Zhang et al. [2011] indicated that because of measurement uncertainty,

deterministic simultaneous identification methods of structural parameters and inputs were

limited in application. Yan et al. [2005] studied the influence of varying environmental

and operational conditions on the performance of a structural health monitoring system to

distinguish between changes due to these conditions and due to damage. Sohn [1998] indicted

that complicated geometry and material properties made accurate modeling of civil engineering

structures very difficult. Moreover, in the case of analytical models, if mode shape expansion or

model reduction techniques were applied, damage could be detected far from its actual location.

In case of experiments, using ambient vibration tests could cause lack of data since higher order
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mode shapes could not be obtained.

2.3.3 Model quality assessment methods

Uncertainty-based model assessment methods were investigated by Most [2011]. The influence

of model choice on a model output was considered. Two methods were proposed to evaluate the

quality of a model without measurement data. A specific procedure was presented to choose

a reference model. The objective was comparing several relevant models and selecting the

optimal model. It was mentioned that a reference model could be the most complex one. Yuen

[2010] indicated that more complicated models could fit data better than a less complicated

one which has fewer adjustable/uncertain parameters. In this case, the most complex one is

optimal. However, this model is an over-fitted model and may lead to poor results. Therefore,

a simpler model is preferable. The complexity of a model can be investigated by the Ockham

factor which is independent of the number of the degrees of freedom. The Ockham factor has

been used to choose the best model including the complexity where not only the number of the

parameters was tested but also the possibility to reduce parameter uncertainty. The Ockham

factor is based on the idea that: ’it is vain to do with more what can be done with fewer’,

William of Ockham. However, less uncertainty does not indicate better fitting. Sometimes

the Ockham factor was as a robustness measure. Moreover, it is important to investigate the

sensitivity of a model around an optimal parameter. Loucks et al. [2005] mentioned that it is

not a good idea to add complexity to a model if the increased complexity is based on processes

whose parameters are difficult to measure.

Bombasaro [2011] investigated the quality of load models for a vortex shedding phenomenon

which was employed to design structures against fatigue. The studied models were compared

and evaluated based on experimental data taken from literature by applying a Bayesian model

selection approach and a response surface analysis. Araújo dos Santos et al. [2005] studied

damage detection using a vibration-based method considering complete and incomplete models.

if measurement data were available for all degrees of freedom, the model was considered

complete otherwise the model was considered incomplete. Law et al. [2001] proposed a damage

detection-oriented modeling approach to improve the sensitivity of the results to small physical

changes and to reduce the complexity of a model by decreasing the required number of the

degrees of freedom. The approach was based on using super-elements to model large-scale

structures and sub-elements to model individual structural components. The performance of

the developed numerical model and updating method was quantified by the errors in mode

shapes before and after updating. Wang [2010] presented a procedure to develop a reliable

finite element model of a reinforced concrete beam considering damage. The influence of mesh

density was investigated. A validation process was introduced. The validation was accomplished

by applying three methods: performing a correlation analysis, comparing natural frequencies
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and comparing mode shapes. He and Zhu [2011] mentioned that accurate modeling of a studied

structure and a robust inverse algorithm are essential to detect damage by observing changes

in natural frequencies. Sohn [1998] utilized a branch-and-bound search scheme to expedite

the search for the most likely damage case without checking all the possible combinations of

damage scenarios.

Coleman and Steele [2009] investigated the quality of data obtained from different types of

models based on data uncertainty which was estimated by applying verification and validation

principles. Verification has been used to indicate if the equations which represent a system

(Real-world) were solved correctly. Validation has been used to indicate if a model was

representing the Real-world accurately. Thacker et al. [2004] mentioned that verification and

validation are processes that accumulate evidence of the model’s correctness or accuracy for a

specific scenario. In other words, they quantify the level of agreement between experiments and

model prediction. However, they do not prove that a model is correct for all possible scenarios.

An overview of several validation methods and their application in engineering can be found in

Hills and Trucano [1999].

In Research Training Group 1462 in Weimar, several approaches have been developed to

assess the performance of numerical models in engineering disciplines. For example, Keitel

[2011] developed a method to evaluate the quality of concrete creep models with and

without considering experimental data. A total uncertainty of a predicted creep, which

includes uncertainties of measurements, the internal uncertainty of the creep phenomenon

and uncertainty of the model prognosis, compliance has been used to assess the quality of

a creep model. The total uncertainty was obtained by combining both parameters and model

uncertainty. A Bayesian updating approach has been used to update the stochastic properties

of creep model parameters if experimental data was available. Moreover, a Bayesian model

selection was applied to evaluate rheological creep models with hierarchical complexity. Graph

theory and sensitivity analysis were employed to assess the quality of global models which

were developed by coupling creep models as partial models with other partial models such as

shrinkage models, geometry, loads, material models, etc. Reuter [2012] presented an approach

to assess the quality of complex engineering models in structural engineering. The approach

was developed assuming that no calibration was accomplished before. Multi-criteria categories

were applied. The model quality was represented by combining test results of system behavior,

system functionality and system dependability using weighting factors which should be chosen

based on the objective of the evaluation. Karaki [2011] proposed an extension concept of

uncertainty and sensitivity analysis to assess the dynamic response of a coupled model in a

bridge considering time-dependent vehicular loading. The influence of considered parameters

and models on the dynamic response was investigated. The model quality was evaluated

by a total uncertainty concept. Nikulla [2012] developed an adaptive process based on the

application of error estimators to kinematical models to assess the necessity of a geometrical
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non-linear computation. Nasser [2012] developed an approach based on energy measures to

evaluate the quality of soil-structure interaction models. The evaluation approach was based

on investigating the uncertainty and the complexity of the developed model. Fröbel [2012]

proposed a method to evaluate the quality of coupling several elements using different software

if a numerical model has to be established. Several classifications of coupling were presented.

For example, coupling based on data flow direction (uni- and bi-directional coupling), based on

synchronization (synchronous and asynchronous coupling), based on runtime behavior (online

and offline coupling), etc. The quality evaluation was based on assessing the uncertainty caused

by mapping errors.

2.4 Conclusion

In this chapter, a review of the most important topics related to damage and damage detection

was presented. The review showed that a lot of work had been done in this field. However,

since many challenges and problems were not solved, damage and damage detection remain

nontrivial problems.

The literature review shows that many damage types can be observed in civil engineering

structures. Many factors influence an occurrence of damage in structures, for example, type of

a structure, loads, environment, etc. Moreover, each civil engineering structure is a unique

structure. Therefore, observing identical damage properties in different civil engineering

structures may be not possible. As a result, developing a sophisticated model to study specific

damage in a structure can be a serious challenge especially before the construction phase.

Therefore, many of the previous studies focused on modeling an effect of certain damage on a

structure, for example, reducing stiffness.

Previous studies showed that global vibration-based methods, which are not sensitive to local

damage, were preferred to detect damage in civil engineering structures. Many methods and

damage indicators have been developed and applied. However, most of them were tested on

specific numerical or experimental examples. Therefore, the reliability of these methods and

indicators, if they were applied to different examples, is questionable. A strategy to select the

best damage indicator based on the type of the problem under consideration is still missing.

Also, no explicit general framework or approach has been developed to evaluate the performance

of an inspection method for damage detection in civil engineering structures. In most cases, false

alarms observed by modifying the material and geometrical properties of a studied structure

to obtain a structural response similar to what damage produces were not investigated.

Many of the developed damage detection methods depend on analyzing a measured response

without requiring a numerical model of a monitored structure. However, proving the reliability

of such methods requires an existing structure and long-term monitoring data. Therefore, the
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application of these methods on future structures which are still in the plan or construction

phase is not possible. In such cases, methods based on numerical models can be applied.

However, because of the uniqueness and the complexity of civil engineering structures and

associated damage type, several numerical models can be developed to represent a specific

problem. It is obvious that choosing a certain model can influence the final results. Therefore,

a reasonable model selection procedure is essential. Generally, in most of the previous studies,

if a numerical model was used to detect damage, the quality of the model or the argument

behind a model choice against other models was not provided. Many methods and tools have

been developed to assess model quality. Similar to damage detection methods, model quality

assessment methods were applied to specific examples where specific features were measured

such as uncertainty, robustness, sensitivity, etc. A framework to relate these features to damage

detection process is still missing.

In this work, a model-based strategy has been developed as a probabilistic framework to assess

and to improve the reliability of an inspection method for damage detection, especially in

civil engineering structures, efficiently. Moreover, the strategy can be used to compare several

inspection methods with different adjustments, for example, by comparing several damage

indicators. The strategy is explained in detail in the following chapter.
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Strategy for Reliability Assessment

3.1 Overview

This chapter aims to introduce a model-based strategy to assess and improve the performance

of an inspection method for damage detection. Since the proposed strategy is a combination

of several methods, figure 3.1, the contribution of each method to the entire framework is

explained in detail in the next sections.

Accomplishing the reliability assessment of an inspection method requires a precise definition

of the damage properties in a specific structure. Next, an appropriate design of the experiment

is arranged to distinguish between the variation of the outputs due to the uncertainty of the

selected input parameters and due to damage. Evaluating the validity of the chosen design

of the experiment is achieved by performing a sensitivity analysis. Based on the results of

the performed sensitivity analysis, the critical parameters which influence the studied outputs

significantly are selected. The uncertainty of the critical parameters is updated by a Bayesian

inference approach. A Meta-Modeling approach is followed to reduce the computational effort.

A damage indicator is developed based on the target damage size and the response of the studied

structure considering obtained posterior density functions of the updated input parameters. The

damage indicator is combined with a probability of detection method to estimate the probability

of the detection curve. In the end, the reliability of an inspection method is assessed using the

probability of detecting the predefined target damage size.

For illustrating the application of the strategy, an inspection method is tested to detect a

specific type of damage in a single degree of freedom system (SDOF). The behavior of a SDOF

system under harmonic excitation is well established analytically. As a result, it is possible to

investigate each step of the strategy introduced in this chapter in detail independently from

numerical problems. The following steps will be carried out to present the chosen example in

this chapter:

37
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Damage Size
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END

True
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Figure 3.1: Developed strategy to investigate the relationship between the quality of the

models and the reliability of an inspection method
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1. Section 3.2: Problem definition in a SDOF system: defining damage type and the

objectives.

2. Section 3.3: Design of Experiment to detect damage in the SDOF system: choosing

excitation proprieties and assigning uncertainty to the input parameters (stiffness, mass,

and damping).

3. Section 3.4: Investigating the validity of the chosen DOE by performing the sensitivity

analysis and illustrating how the sensitivity analysis can be applied to obtain the optimal

design of the experiment.

4. Section 3.5: Model updating using Bayesian inference: investigating the types of

uncertainty that should be considered and updating the important input parameters.

5. Section 3.6: Calculating the probability of damage detection (POD) and the probability

of false alarm (PFP) and evaluating the reliability of the inspection method.

3.2 Problem definition

Choosing a specific damage θg to be traced is necessary. Therefore, the problem definition

includes selecting an undesired change (damage) in a certain structure or a part of it to be

detected. This selection can be made after specifying limit states related to the stability or the

serviceability of a studied structure. If the type, the severity and the location of damage are

specified, a model can be chosen to quantify damage severity based on its type. It should be

possible to include the damage model within the global model of the structure at the selected

damage locations. An inspection method can be chosen to observe the changes in the structural

response due to the selected damage model by performing experiments.

In civil engineering, it is usually difficult or even impossible to use physical models to perform

real experiments to investigate the influence of a damage model on an actual structure.

Therefore, a numerical model GM is required to conduct this investigation by simulating

the needed experiments. Several numerical models can be developed to describe a particular

problem. However, some restrictions should be taken into account when a numerical model

has to be chosen. Since the goal of the model is damage detection, it has to be possible to

combine an appropriate numerical model of the selected damage with the numerical model

of the structure. If a sophisticated model is required, a trade-off between the computational

efforts and uncertainty may be considered.

For a proper use of a developed numerical model GM to simulate a certain test for damage

detection, an assessment procedure has to be applied to evaluate the performance of the chosen

model. In this work, an index QV has been defined to quantify the quality of the chosen
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numerical model GM . QV is limited in a range [0, 1], {QV ∈ ℜ : 0 ≤ QV ≤ 1}. If a test is

performed to measure a response d̄i considering damage size θgi and d̄i+1 considering damage

size θgi+1 > θgi using an experimental model GE, an appropriate model GM can be chosen to

calculate the response d = GM({θ}, θg), which should be directly proportional to the measured

response d̄:

∀θg : θgi ≤ θg ≤ θgi+1 ⇔ d(θg) ∝ d̄(θg) (3.1)

QV can be defined as the correlation between the structural response of both models GM and

GE considering damage θg. If σd(θg) refers to the standard deviation of the structural response

d computed using a numerical model GM due to the variation of damage size θg and if σd̄(θg)

refers to the variation of the structural response d̄ measured using an experimental model GE

due to the variation of damage size θg, QV can be defined assuming a uniform distribution of

θg in the interval as follows:

∀θg : θgi ≤ θg ≤ θgi+1 : QV =



















E
[

(d(θg) − µd(θg))(d̄(θ
g) − µd̄(θg))

]

σd(θg)σd̄(θg)

> 0

0

(3.2)

If QV = 1, an agreement between the structural response obtained from the both models GM

and GE due damage θg is achieved. 0 ≤ QV < 1 indicates that there is an error that can lead to

wrong evaluation of the selected inspection method. The error could occur if some important

phenomena were not included within the numerical model or/and if inappropriate experiments

were performed. In this step, the error appears as a lack of correlation between the structural

responses of the numerical and experimental models.

For Nd responses:

∀θg : θgi ≤ θg ≤ θgi+1 : QV =



















1

Nd

Nd
∑

j=1

E
[

(dj(θ
g) − µdj(θg))(d̄j(θ

g) − µd̄j(θg))
]

σdj(θg)σd̄j(θg)

> 0

0

(3.3)

If the experimental model GE is not available, a reference model GMR can be used to evaluate

the model GM . The reference model can be chosen based on experience or based on other

features, for example, selecting the most complex model as a reference model.
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Problem definition in a SDOF system

The performance of a vibration-based inspection method was assessed to detect the degradation

of the stiffness k in a single degree of freedom system with stiffness (k) mass (m) damping

c = 2 × m × ωn× ζ system, figure 3.2, {θ} = {θ1, θ2, θ3} ≡ {k,m, ζ}, where ωn is the angular

frequency of the studied system. Since accelerometers have been commonly used in practice

to measure the dynamic response of engineering structures, the acceleration time history ẍ (t)

was selected as output. The inspection method is based on observing the influence of damage

θg on the measured acceleration ẍ(t) of the system under a certain excitation F (t). Since this

influence can be at each time step ti of the time history, the cumulative signal energy d of the

acceleration time history for a specified time period T = te − t0 was chosen as an objective

function to monitor this variation, eq. (3.5), where t0 is the time when the signal starts and te

is the time when the signal ends. The initial conditions were chosen x(0) = 0 and ẋ(0) = 0 in

next the steps if nothing else is mentioned.

d = ∆t
T/∆t
∑

i=1

ẍ2(i) (3.4)

As ∆t is constant, one can omit it in the context of the applications described here. The

cumulative signal energy d becomes then:

d =
T/∆t
∑

i=1

ẍ2(i) (3.5)

In order to avoid the influence of the numerical error, which can result from applying numerical

methods to solve the studied system, on the assessment of the inspection method, the analytical

solution of the equation of motion for a SDOF system, eq. (3.6), under a chosen harmonic

exciton F (t) with an amplitude Fa and angular frequency ω was used for both GM and GE.

Therefore, QV = 1.

mẍ+ cẋ+ kx = Fa sin(ωt) (3.6)

If θg = ∆k : k = k0− ∆k, where k0 is the stiffness of the undamaged system, refers to the

m
F(t)

k

c

Figure 3.2: A stiffness-mass-damping system excited by a force F (t)
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degradation of the stiffness θ1 = k, the considered problem is the reliability of the chosen

inspection method to detect a specific target damage size θg∗ which is the allowed damage size.

Damage is considered unacceptable if:

∆k exceeds 15%× k0. The inspection method is considered reliable if the probability of

detecting any damage size θg ≥ 15% × k is at least 95% associated with a probability of

false alarm that does not exceed 5%. As a result, the problem definition of the studied example

can be written as follows:

Ho : ∀θg : θg ≥ 15% × k0 ⇒ POD(θg) ≥ 95%, PFP ≤ 5%

H1 : The inspection method is not reliable
(3.7)

3.3 Design of Experiment

As mentioned in the previous section, the chosen inspection method aims to detect specified

target damage θg by observing the change of the output d. Since the response varies due to the

uncertainty of the input parameters {θ} as well, it can be difficult to detect the target damage

size. As a result, it is necessary to collect information which explains the variation of the outputs

due to the uncertainty in the input parameters {θ}. In this work, the variation of the input

parameters in time is not included since experiments have to be conducted in a short period

(seconds and minutes). If a monitoring system has to be designed, the variation of the input

parameters in time has to be included. An appropriate DOE means designing an experimental

setup to detect a specified damage θg. For a vibration-based inspection method, DOE may

involve choosing excitation properties (amplitude, frequency, etc.) and sensor locations.

To obtain an appropriate DOE, theoretical background and/or preliminary experiments can

be used. The input parameters {θ} and their initial assigned values should be selected. The

initial value of a selected input parameter is associated with uncertainty which is given by

a probabilistic model. Several approaches can be used to select an appropriate probabilistic

model. For example, a statistical test can be conducted to measure the rate of getting a

particular value of an input parameter and fitting the resulting histogram by an appropriate

distribution function. On the other hand, a subjective selection of a probabilistic model based

on formal experience and/or knowledge is possible. In this case, a probabilistic model indicates

how likely a chosen value of an input parameter represents the actual value of a parameter in

a given model. A sampling method has to be selected to transfer this uncertainty to samples

that can be used later to compute the response d and perform an uncertainty analysis.
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Figure 3.3: The chosen harmonic excitation F (t) (a) and its | FFT | (b)

Design of Experiment to detect damage in the SDOF system

In the SDOF example, damage is related to stiffness degradation θg = ∆k. Therefore, it

is reasonable to choose an excitation F (t) that generates an output d which is sensitive to

stiffness θ1 = k. This means, a slight stiffness variation induces a significant modification of

the output. Therefore, a harmonic excitation F (t) = Fa sinωt was chosen, figure 3.3, where ω

was chosen to be smaller than the natural angular frequency ωn of the system such that the

frequency ratio η = ω/ ωn < 1. If η = 0, then the force is static and the response is influenced

completely by the stiffness. In this case, no acceleration is measured and d = 0. Therefore,

a trade off between η and Fa should provide a measurable response and a significant stiffness

contribution. In addition, T = te − t0 was chosen to obtain a steady state response where the

stiffness dominates, figure 3.4.

In this example, the real values of the input system parameters are given in table 3.1. The

true value of the natural angular frequency of the system ω∗
n = 50.5 radians/second and

the excitation properties were chosen Fa = 20 N, ω = 15 radians/second. Accordingly, the

frequency ratio ω/ ωn was η ≈ 0.3. The amplitude of the Fast Fourier Transform (FFT),
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eq (3.8), shows two peaks, figure 3.4 (c), the high peak is related to the excitation frequency

and the small peak is related to the natural frequency of the system. This means that Fa value

is large enough to obtain clearly the forced response of the studied system under the chosen

excitation.

Y (k) = FFT (ẍ) =
n

∑

j=1

ẍ(j)W (j−1)(k−1)
n (3.8)

where Y (k) is the response transformed from the time domain into the frequency domain,

Wn = e(−2πi)/n, i =
√−1 and k, j = 1, 2, · · · , n

The discrete FFT was applied to the discrete acceleration signal generated from eq (3.10) by

calculating the ∂2x
∂t2

for each ti : 0 ≤ ti ≤ 30 s where ti+1 = ti+∆t.

∂2x

∂t2
=

∂2

∂t2
[e−ζωnt(a1 sinωdt+ a2 cosωdt) + a3 sinωt+ a4 cosωt] (3.9)

By performing the differentiation, eq (3.9) can be written as follows:

∂2x

∂t2
= − e−ζωnt[(a1ω

2
d − 2a2ζωdωn − a1ζ

2ω2
n) sinωdt+ (a2ω

2
d + 2a1ζωdωn − a2ζ

2ω2
n) cosωdt]

− ω2(a3 sinωt+ a4 cosωt)

(3.10)

a1 and a2 are constants related to the initial conditions at t0 = 0 s. a3 and a4 are

constants related to the particular solution of eq (3.9). a1, a2, a3 and a4 can be calculated

as shown in Chopra [2012]. Considering the values given in table 3.1, [a1, a2, a3, a4] =

[5.95×10−5,−13×10−4, 43×10−4,−5.95×10−5]. ωd = ωn
√

1 − ζ2 is the damped natural angular

frequency. Uniform distribution density functions were assigned to the studied parameters {θ}
as a subjective uncertainty, table 3.2. The coefficients of variation (COV), which is defined as

the ratio of the standard deviation σ to the mean µ: COV = σ/µ, were assigned based on the

difficulty of measuring the assigned value of the input. Therefore, the COV of the damping

ratio is larger than the COV of the mass and the stiffness since it is difficult to identify the

damping ratio with a similar accuracy of the mass and the stiffness.

To explore the validity of the suggested design of experiment considering the assigned subjective

Table 3.1: True values assumed for the studied input parameters {θ}

θ∗
1 = k∗ [N/m] θ∗

2 = m∗ [kg] θ∗
3 = ζ∗ [-]

{θ∗} 5050 1.98 0.021
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uncertainty, samples which are combinations of the input parameters between their maximum

and minimum values given in table 3.2 with constant intervals ∆θ = (θmax − θmin)/100 were

generated and used to calculate the signal energy. The results in figures 3.6 show that the signal

energy is sensitive to the variation of the stiffness and less sensitive to the mass and damping

ratios variations.
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Figure 3.4: Structural response ẍ(t) (a), cumulative signal energy d(t) (b), and FFT of the

acceleration signal using the mean values, table 3.2, (c)
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In many cases, the amplitude of the ambient excitation caused by surrounding noise can

be considerable compared to the chosen excitation. To investigate the influence of the

ambient excitation on the validity of the chosen design of experiment the input excitation

was contaminated with white noise γF ∼ N (0, σ2
γF

), eq (3.11), before calculating the signal

energy, figure 3.5. Figures 3.7 show the variation of the response considering the ambient

excitation. The response has been calculated using the Newmark β = 1/4 method (constant

average acceleration) since the analytical solution is not applicable anymore. The results show

that indicating the influence of the mass and the damping on the response is more difficult.

Moreover, the increment in energy values can be observed. Figure 3.7 (b) show that despite

the noise, the influence of stiffness variation on the response remains significant.

F (t) = Fa × sinωt+ γF (3.11)

Validating the chosen DOE using the process described above may be expensive especially for

more complex examples. Therefore, the sensitivity analysis supported by Meta-models will be

used in the next step to validate the suggested DOE.

Table 3.2: Mean values {µ}, minimum and maximum values of the studied parameters {θ}
and their coefficients of variation COV

θ1 = k [N/m] θ2 = m [kg] θ3 = ζ [-]

µ 5000 2.00 0.020

Min 4480 1.87 0.0165

Max 5520 2.13 0.0235

COV 0.06 0.037 0.1
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Figure 3.5: Structural response ẍ(t) (a) under the contaminated excitation, cumulative signal

energy d(t) (b), and FFT of the acceleration signal using the mean values, table

3.2, (c)
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Figure 3.8: A histogram shows the cumulative signal energy d(te) variation due to the inputs

{θ} uncertainty using N = 100 samples

A Latin hypercube sampling method was used to generate N = 100 samples. The acceleration

time histories ẍ(t) were computed using the analytical solution shown in eq (3.9) with time

interval ∆t= 0.005 s for each sample. The cumulative signal energy d(t) was computed between

t0 = 0 and te = 30 s, figure 3.4. The variation of the cumulative signal energy d(t = 30 s)

shown in figure 3.8 indicates that the structural response is significantly influenced by the inputs

uncertainty. This may lead to a large number of false alarms and difficulties detecting damage.

3.4 Sensitivity analysis

Since the aim of a design of an experiment is to find the best arrangement to detect damage,

sensitivity analysis evaluates the quality of the chosen design. The design was considered valid if

the contribution of the desired parameters {θ̂} ⊆ {θ} is significant. The {θ̂} are the parameters

that lead to detect the chosen damage type. Moreover, the design is optimal if the influence

of the undesired parameters is minimized. In complex models where a large number of input

parameters is involved, sensitivity analysis is a powerful tool to quantify their contributions

and the contribution of the interaction between these parameters.

Sensitivity analysis procedures explore and quantify the impact of possible errors in input data

on predicted outputs and system performance indices, Loucks et al. [2005]. Different methods

can be used to perform a sensitivity analysis. In this work, both the contribution of each input
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parameter and the interaction between the parameters were tested. Therefore, the Total-effect

sensitivity analysis described by Saltelli et al. [2007] was used. eq. (3.12).

sTi,j =
E(V ar(di|θj ∼ θ))

V ar(di)
(3.12)

where di is the studied system output and V ar(di) is the variance of the output.

The term E (V ar(di| θj ∼ θ)) is the expected amount of variance that would remain unexplained

(residual variance) if θj and only θj was left free to vary over its uncertainty range, assuming

all other variables had been determined. High values of the Total-effect index sT i,j mean that

the input θj influences the response di significantly.

The quality of a chosen DOE was quantified by an index QDOE. As mentioned before, an

optimal DOE should provide large values of sT for the desired parameters {θ̂} and small values

of sT for undesired parameters. The developed index is limited in a range [0, 1], {QDOE ∈ ℜ :

0 ≤ QDOE ≤ 1}. If QDOE = 1, then the chosen DOE is optimal. If 0 < QDOE < 1, then the

chosen design is not optimal and a false alarm due to the uncertainty of the input parameters

should be expected. If QDOE = 0, then the DOE is not able to provide any information about

the desired parameters. If the value sTd,θ̂ represents the influence of Nθ̂ desired parameters {θ̂}
on the response d and the value sTd,θ represents the influence of the all Nθ parameters {θ} on

the response d, the index QDOE can be calculated as follows:

QDOE =

N
θ̂

∑

i=1
sTd,θ̂

Nθ
∑

i=1
sTd,θ

(3.13)

3.4.1 DOE based on numerical model quality and sensitivity analysis

For vibration-based inspection methods, the excitation properties and sensors locations should

be chosen to increase the reliability of the inspection method for damage detection.

In case of harmonic excitation, the frequency of the chosen excitation can be selected based

on the sensitivity analysis results, eq. (3.14). ωsT represents the excitation frequency that

leads to the highest sTθ̂ value due to the influence of the studied damage θg on the structural

response d.

ωsT : arg max
ω

sTθ̂ (3.14)

Evaluating the performance of a chosen inspection method using a numerical model GM can

be accurate if the agreement between the computed and the measured structural response of
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the studied structure is obtained. If X refers to all possible locations where a sensor can be

placed on the studied structure to measure the structural response, the sensor locations x for

damage detection can be optimized based on QV and QDOE as follows:

x ⊆ X : arg max
x

[QV , QDOE] (3.15)

After choosing ωsT and x, the amplitude of the selected excitation can be chosen in a way that

the structural response d(x, ωsT , Fa) can be distinguished from the response of the structure due

to noise or ambient vibration d(x, γF ), where γF can be a random noise excitation. The chosen

Fa value improves sTθ̂ value due to the influence of the studied damage θg on the structural

response d.

Fa : arg max
Fa

sTθ̂ (3.16)

DOE to detect damage in the SDOF example

Eq. (3.14) was applied to the studied SDOF example to obtain the optimum excitation

frequency ωsT that maximizes the sensitivity of structural response to the stiffness. The

sensitivity analysis was performed as explained in the next sections. The analysis proceeds

as follows:

1. ηi+1 = ηi + ∆η where η0 = 0.1, ωi+1 = ηi+1× ωn and ∆η = 0.1 for this example. ωn was

calculated based on the mean values given in table 3.2.

2. Calculating the structural response d using the numerical model GM for N = 100 samples.

The variation of the input parameters is based on table 3.2.

3. Performing sensitivity analysis and calculate sT .

4. Repeat the process until η = 5.

The result shown in figure 3.9 indicates that for η< 1 the stiffness has a significant effect on

the response. This effect reaches its peak if η= 0.3 where ωsT ≈ 0.3 × 50 = 15 rad/s. If η> 1

the influence of the stiffness decreases and it can be omitted for η>> 1. Since a harmonic

excitation is used to excite the structure the influence of the damping as the results indicate

is unimportant. If η= 1, which represents the resonance phenomenon, a sudden peak appears,

where all input parameters (stiffness, mass, and damping) are activated. For η<< 1 longer

time should be used to calculate the response d and sT otherwise the excitation behaves like a

static force and no vibration was observed in the selected period T = 30 s. In reality, applying
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3.4.3 Choosing the terms of a Meta-model

In order to obtain an optimal or suboptimal Meta-model, a strategy for selecting the terms

of a polynomial regression-based Meta-model was developed and applied, figure 3.11. This

selection will be validated in the next steps. If the chosen Meta-model is not valid, other types

of regressions can be applied. After defining the input parameters {θ}, the outputs {d}, the

degree of the polynomial equation, and the maximum degree of the mixed terms ψθ, all possible

terms {Θi} : i = 1 : n can be generated where n is the number of generated terms and Θi refers

to a term from the group {Θi}: Θi ∈ {Θi}. Based on Algebra principles, if a set has nθ elements

and the number of combinations n of the mixing term degree rθ = 1 · · ·ψθ is required, then:

n =
ψθ
∑

rθ=1

C(nθ, rθ) =
ψθ
∑

rθ=1

nθ!

rθ!(nθ − rθ)!
(3.17)

where C(nθ, rθ) is the number of rθ-combinations from a given set A of nθ elements. The

Meta-model will be developed as follows:

1. A single term sub-Meta-model i is developed using only the term Θi. The correlation ρ2
d,di

between the predicted value di computed using the developed sub-Meta-model and the

output of the numerical model d is calculated as shown in eq. (3.18), where cov(d, di) refers

to the covariance, σd is the standard deviation of the response d because of the variation

of the input parameters and σd is the standard deviation of the response d because of the

variation of the input parameters and fitting error because of using Meta-models.

ρ2
d,di

=

[

cov(d, di)

σd × σd

]2

(3.18)

2. Based on ρ2
d,di

, the terms {Θi} are sorted from largest ρ2
d,di

to smallest ρ2
d,di

.

3. Starting from the first sorted term Θ1, which has the largest ρ2
d,di

, a set of combined terms

{Θ} is created. At step i = 1 the initial set is {Θ} = Θ1.

4. At step i a new term Θi is added to the set {Θ} before generating a multi term sub-

Meta-model i and calculating the correlation ρ2
d,di

. If the added term Θi improves the

correlation between the predicted value di and di, the term Θi is considered otherwise it

is ignored.

5. The final Meta-model contains only NΘ terms that improve the correlation ρ2
d,di

, NΘ ≤ n.
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Figure 3.11: A Strategy to select the terms of a Meta-model
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3.4.4 Meta-Model for Sensitivity analysis

Performing the sensitivity analysis may require running a model GM for a large number of

samples which can be expensive. Therefore, in this work, a Meta-modeling approach was

applied to minimize the computational burdens.

A developed Meta-model should satisfy several statistical requirements. These requirements

are:

1. the relationship between the input and the output variables is linear.

2. the residuals are random and normally distributed.

3. constant variance of the residuals with zero mean.

In literature, there are several criteria to check these requirements, for example, graphical

analysis of the residuals and regression diagnostic using a quantitative analysis of the residuals.

In this work, the linearity is checked by calculating the coefficient of determination R2,

eq. (3.19), which measures the contribution of the independent variable(s) in the model,

Rawlings et al. [1998].

R2 =

N
∑

i=1
(di − di)

2

N
∑

i=1
(di − µd)2

(3.19)

To check the other assumptions, a graphical analysis of the residuals is used. Graphical methods

are a kind of regression diagnostics techniques for detecting failures in the assumptions, unusual

observations, and inadequacies in the model, statistics to flag observations that are dominating

the regression, and detecting situations in which strong relationships among the independent

variables are affecting the results, Rawlings et al. [1998]. The following tools were applied to

check the assumptions:

1. The histogram of the residuals and the normal probability plot are used to check if the

residuals are approximately normally distributed.

2. The lag plot, which is formed by plotting each residual value versus its successive residual

value, is used to check the randomness of the residuals.

3. Plotting the residuals versus the predicted values is used to check if the variance is constant

with zero mean.
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In case that one or more of these assumptions are not satisfied, another scale of the outputs

{d} may be used to develop the required Meta-model, for example, log(d) or dι where ι 6= 0.

In this work, a global polynomial regression is used to reformulate the studied problem. As a

result, the relationship between a structural response and the highlighted parameters is obtained

in eq. (3.20):

{d} = [β]{1 θi θiθj θiθjθr ...}T (3.20)

where 1 ≥ i, j, r, ... ≤ Nθ, Nθ is the number of the input parameters. [β]Nd×NΘ
is the estimated

regression coefficients matrix, NΘ is the number of terms of the Meta-model, Nd is the number

of outputs. { d }Nd×1 is the vector of outputs. Developing a Meta-model requires defining four

sets of data. They are the inputs {θ}, the outputs {d}, the degree (order) of the polynomial

equation, and the degree of the mixed terms: {θiθj θiθjθr ...}. It is worth to mention that

in Meta-models increasing the degree of the polynomial could reduce the fitting error but not

necessarily the prediction error, Yuen [2010]. There are several methods to obtain the regression

coefficients matrix [β]Nd×NΘ
. In this work, a least square method was used. If N samples are

used to generate data using a numerical model GM , then

[Θ]N×NΘ
=

































1 θ1,1 · · · θ2
1,1 θ1,1 × θ1,2 · · · θ3

1,1 θ1,1 × θ1,2 × θ1,3 · · ·
1 θ2,1 · · · θ2

2,1 θ2,1 × θ2,2 · · · θ3
2,1 θ2,1 × θ2,2 × θ2,3 · · ·

...
...

...
...

...
...

...
...

1 θi,1 · · · θ2
i,1 θi,1 × θi,2 · · · θ3

i,1 θi,1 × θi,2 × θi,3 · · ·
...

...
...

...
...

...
...

...

1 θN,1 · · · θ2
N,1 θN,1 × θN,2 · · · θ3

N,1 θN,1 × θN,2 × θN,3 · · ·

































(3.21)

The regression coefficients are obtained as follows:

[β] = [([Θ]T [Θ])−1[Θ]T [d]]T (3.22)

The residual [δ] between both a numerical model and a Meta-model is given in eq. (3.23):

[δ] = [d] − [d] (3.23)
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Meta-model for the response of the SDOF example

A Meta-model was developed to represent the relationship between the cumulative signal energy

d and the input parameters {θ} = {θ1, θ2, θ3}T ≡ {k,m, ζ}T . The dataset which includes 100

samples calculated in the previous subsection was used. Trying a larger number of samples

shows that if N ≥ 100, only small changes, which do not influence the sensitivity analysis

results, were observed. The degree of the polynomial equation was chosen as 2, and the degree

of the mixed terms was chosen as 2. The developed strategy described in the previous sections

was used to choose the best terms of the Meta-model, eq. (3.24).

d−1/2 ={β}T{1 θ2
1θ

2
2 θ2

1θ
2
3 θ2

1θ2 θ2
1θ3 θ2

1

θ1θ
2
2 θ1θ

2
3 θ1θ2 θ1θ3 θ1 θ2θ

2
3 θ2

2 θ2 θ3}
(3.24)

The statistical properties of the residuals are shown in figure 3.12. {β}T was estimated by

applying eq. (3.22). For this example Nd = 1. The coefficient of the determination R2 = 100%

indicates that the model shows good fitting of the data. The histogram of the residuals,

figure 3.12(a), shows approximately a normal distribution. This is confirmed by the normal

probability plot, figure 3.12(b), where all data points are located close to a straight line given

that Z − value as follows:

Z − value =
δ − µδ
σδ

(3.25)

Plotting the residuals versus the predicted value, figure 3.12(c), shows a constant variance with

zero mean since no outlier can be observed. The results were also confirmed by calculating the

mean value of the residuals. The lag plot, figure 3.12(d), shows that the residuals are satisfying

the randomness condition since the residuals plot does not show a specific shape that can be

fitted by a model. As a result, the developed Meta-model was used to perform the sensitivity

analysis. For this example:

{β}T = {−2.530×10−02, −2.202×10−10, −5.223×10−08, 8.963×10−10, 3.830×10−09, −9.872×
10−10, 2.236×10−06, −1.801×10−04, −8.998×10−06, 9.450×10−06, 1.273×10−05, −3.776×10−01,

−6.598 × 10−03, 2.427 × 10−02, 4.224 × 10−02}T .

Since the Meta-model developed in the last step was used instead of the numerical model GM ,

the Total-effect index sTi,j can be written as:

sTi,j =
E(V ar(di|θj ∼ Θj))

V ar(di)
(3.26)

The sensitivity analysis was performed using N = 10000 samples generated using a Latin

hypercube sampling method. Comparing the computational time of both numerical and
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Figure 3.12: Statistical properties assessment of the residuals

regression models to obtain the sensitivity analysis results, the Meta-model was almost 180

times faster without including the time required to generate the Meta-model which took only

a few seconds. As a result, using the Meta-model as an alternative of the numerical model GM

brings a significant improvement for the efficiency.

In figure 3.13, the sensitivity analysis results calculated using the numerical model GM and

the Meta-model d are presented. The results show good agreement between the results of both

models.

Since the result of the sensitivity analysis shows that the output d is influenced mainly by the

variation of the stiffness θ1 = k, the chosen DOE is appropriate to detect damage related to the

degradation of the stiffness θg = ∆k. Moreover, the variation of the mass and damping ratio

does not influence the output significantly.

In order to evaluate the quality of the chosen design, eq.(3.13) was applied. In this example,
∑

sTθ̂ = 0.96 and
∑

sTθ = 0.9977 As a result QDOE = 0.95. The ideal DOE in this example
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Figure 3.13: The Total-effect index sT calculated using the numerical model GM and the

Meta-model d using 10000 samples. Good agreement is observed

will give
∑

sTθ̂ = 1 and
∑

sTθ = 1, as a result, QDOE = 1.

For illustrating the importance of the chosen excitation in case of damage detection, the

sensitivity analysis procedure explained in this subsection was applied using a high-frequency

harmonic excitation compared to the system’s natural frequency, η = 10, and an impulse

excitation separately. Figure 3.14 shows the result of the applied sensitivity analysis. The

results show that a high-frequency harmonic excitation was sensitive to the variation of the

mass and the impulse excitation was sensitive to both the mass and damping variation. These

results were obtained if the described signal energy used as an objective function. As a result,

both excitations are not valid to detect damage related to stiffness degradation. Moreover, using

a harmonic excitation that has a frequency close to the system’s natural frequency, η ≈ 1, leads

to a significant response where the stiffness, mass, and damping are activated.

The number of samples N required to obtain reliable sensitivity analysis results can be

determined by increasing N until the convergence of sT values is reached.
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Figure 3.14: The Total-effect index sT using different excitation types

3.5 Model Updating

In this section, the contribution of measurements to the developed strategy is illustrated. If a

number of experiments similar to those designed using a numerical model was conducted, it can

be possible to reduce the uncertainty of the input parameter by updating the model. Model

updating is important if the reliability of the inspection method has to be improved. However,

this step requires an existing structure.

There are many methods that can be applied to perform model updating. Some of these

methods are deterministic and others are probabilistic. Deterministic updating methods are

based on finding a best combination of input values that maximize/minimize an objective

function. Information from prior knowledge or measurement uncertainty can be considered by

adding penalty, regularization terms and weighting factors. On the other hand, probabilistic

model updating methods employ knowledge obtained from measurements, measurement

uncertainty and/or the experience of the user in order to obtain a best combination of inputs

values. Probabilistic model updating methods are useful if the updating of the statistical

properties of the input parameters is required.

In this work a Bayesian updating approach was used. As a result, the statistical properties

of the updated parameters were directly obtained. These properties are useful to compute

the probability of damage detection in the next step. In order to apply the chosen Bayesian
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inference approach the prior density functions and the likelihood function have to be chosen.

After that, the posterior density functions can be calculated.

3.5.1 Bayesian inference

Bayesian Inference is a kind of a statistical inference which was derived depending on Bayes

Theorem. The principle of this approach is based on the conditional probability. The objective

of applying Bayesian Inference can be to identify the input parameters and/or choosing a

suitable model class to represent the studied problem. The basic concepts of many Bayesian

methods and their application in structural dynamics and civil engineering can be found in

Yuen [2010] and Most [2011].

Given A and B are individual events with known probabilities P (A) and P (B). The conditional

probability of B given A occurs is:

P (B|A) =
P (A ∩B)

P (A)
(3.27)

The conditional probability of A given B occurs can be written as follows:

P (A|B) =
P (A ∩B)

P (B)
(3.28)

The Bayesian Inference model is estimated replacing B by the measured outputs {d̄}; A by

the input parameters {θ}, and the probability P by the probability density functions p. As

a result, the posterior density functions p({θ}|{d̄}) are proportional to the likelihood function

p({d̄}|{θ}) and prior density functions p({θ}) as follows:

p({θ}|{d̄}) ∝ p({d̄}|{θ})p({θ}) (3.29)

There are different techniques that can be used to apply a Bayesian Inference approach to a

numerical method. However, one of the well-known challenges by applying Bayesian Inference is

the computational efficiency. In order to overcome this problem several simulation techniques

have been developed. For example, the traditional and the adaptive Markov Chain Monte-

Carlo simulation have been mostly used. Another example is Kalman filter that can be used as

Bayesian updating procedure for linear and slightly nonlinear systems. Many other solutions

can be found in literature. However, these simulation techniques must be carefully implemented

and applied in order to obtain robust solutions.

In this work, the computational efficiency problem was improved by using Meta-models. The

advantage of adapting this solution is that calculating Meta-models is very fast compared to
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numerical models. Therefore, the domain of the inputs can be investigated using a large number

of samples generated from any prior distribution density function to obtain a robust solution.

Moreover, modeling errors due to the simplification process can be considered as shown in the

next subsections. In order to generate samples a sampling method is applied. The method is

based on sampling from prior density functions of the inputs using a Latin Hypercube Sampling

method.

3.5.2 Prior density function

Before considering measurements, preliminary knowledge related to the uncertainty of an input

θ is given by a prior probability density function p(θ). Generally, structural drawings and the

properties of the materials can be used to estimate prior information about a studied structure.

Yuen [2010] suggested that it is better to choose the prior distribution and its boundaries based

on experience than observing the measurements. In literature, there are many classifications

of prior probability density functions. For example p(θ) can be improper or conjugate prior

distribution functions. Improper prior distribution functions may lead to posterior distribution

functions which have a different family of the prior distribution functions. On the other hand,

conjugate prior distribution functions benefit from the knowledge provided by measurements

to obtain the statistical properties of posterior distribution functions but keeping the same

distribution type.

Prior probability density functions can be either informative or uninformative. For many

engineering applications, prior information about studied parameters is in-between. This is

because in most cases the physical laws limit their variations, but it is still hard to estimate

their actual uncertainty distribution. Generally, a flat prior distribution does not influence the

parametric identification in the range where the likelihood dominates. However, it influences a

model class selection. More information can be found in Yuen [2010] and Gelma et al. [2004]

There are different methods to choose a prior probability density function. For example,

maximum information entropy methods have been used to assigned prior probability density

functions based on maximizing the Shannon-Jaynes information entropy which is given as

follows, Gray [2009]:

S = −
∫

p(θ) log p(θ)dθ (3.30)

where p is the probability mass function which has to sum to one. Gray [2009] mentioned

that although natural logarithms are more convenient for mathematics, it was indicated that

logarithms to the base two instead of natural logarithms should be used. This is because base

two logarithms provide more intuitive descriptions than natural logarithms.
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Another method to select a prior distribution was presented by Chen and Ibrahim [2000].

The method was based on the idea of raising the likelihood function of historical data to a

particular power which was limited between 0 and 1. Such prior distribution, which was called

the power prior distribution, was proposed to improve arbitrary regression models. These priors

were found quite useful in a wide variety of applications, including carcinogenicity studies and

clinical trials.

3.5.3 Likelihood function

A likelihood function represents the contribution of the measured data in establishing the

posterior distribution, Yuen [2010]. This information describes the quality of a chosen model

class which is parametrized by {θ} to explain observations {d̄}. A likelihood function for data

measurement d̄ is written as follows

L(d̄|{θ}) ≡ p(d̄|{θ}) (3.31)

Moreover, if {d̄} = {d̄1, · · · , d̄i · · · , d̄n}T are independently identically distributed random

variables with a density function p(d̄i|{θ}), the likelihood function can be written as follows:

L({d̄}|{θ}) ≡
n

∏

i=1

p(d̄i|{θ}) (3.32)

The density function p(d̄i|{θ}) depends on the studied problem.

In this work, the likelihood function was obtained assuming that uncertainty was independent

and normally distributed if no information about the statistical properties of measurements

are provided. If {d̄} = {d̄1, · · · , d̄i · · · , d̄n}T are independently identically normally distributed

random variables d̄i ∼ N (d̄i,σ
2
d̄i

), then:

L({d̄}|{θ}) ∝
n

∏

i=1

exp[−σ−2
ǫ,i (d̄i − di)

2] (3.33)

where [σǫ
2] is a diagonal matrix referring to the covariance of the total uncertainty {ǫ} =

{ǫd̄}+{ǫdθ}. Given that {d∗} is a set of true response of a structure, then {ǫd̄} = {d̄}−{d∗} is the

measurement uncertainty and {ǫdθ} = {d∗} − {d} is the model uncertainty related to the input

parameters uncertainty. As a result, we can describe the uncertainty between measurements

{d̄} and the outputs of the numerical model GM as {ǫ} = {d̄}−{d}. Moreover, if a Meta-model

is used to approximate a numerical model, then the uncertainty due to this approximation is

{d} − {d̂} = {δ}. Therefore, it is possible to write that {ǫ} = {ǫd̄} + {ǫdθ} + {δ}. As a result

we can write:
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[σ2
ǫ ] = [σ2

d̄] + [σ2
θ ] + [σ2

δ ] (3.34)

Investigating σd̄ for the SDOF example

In case of SDOF example, calculating the cumulative energy of the recorded acceleration signal

requires defining a start t0 and an end time te of the signal. The initial conditions of the

measured response in real tests are expected to differ from the initial conditions defined in the

model. If acquiring data is started after the system reaches its steady-state response under

periodic excitation, the energy calculated for the entire number of periods, the signal energy

becomes independent of the initial condition. However, if the input excitation is contaminated

with different types of noise, the influence of the variation of the initial conditions may influence

the signal energy.

The standard deviation σd̄,1, which represents the variation of the response d̄ because of the

variation of the initial conditions, can be estimated by running the numerical model given in

eq. (3.10) assuming different initial conditions and observing the variation of the output d as

follows:

1. The variation of the initial conditions was introduced in the model as initial displacements

and velocities which are considered as normally distributed random variables. If the

system is slightly vibrating with its natural frequency it is possible to assume that ẋ0 =

ωn × x0. In this case, the statistical properties of the initial conditions of the studied

example can be given as follows: x0 ∼ N (0, 0.0012) [m], ẋ0 ∼ N (0, 0.0012 × ω2
n) [m/s].

2. Running the model for N samples considering the mean values of the input parameters

given in table 3.2 the value {d̄1, d̄2, · · · , d̄i, · · · , d̄N} are obtained considering different

initial conditions.

3. If d̄ is the mean value of d̄i : i = 1, 2, ..., N , d̄ has a distribution close to the normal

distribution d̄ ∼ N (d̄, σ2
d̄,1

), where σd̄,1 = σd̄i,1
/
√
N figure 3.15 (b).

4. ǫd̄,1 = d∗−d̄ is the variation of d̄ from d∗ due to the initial conditions. ǫd̄,1 was considered as

a normally distributed random variable with zero mean and a constant standard deviation

σd̄,1, Eq. (3.35).

ǫd̄,1 ∼ N (0, σ2
d̄,1) (3.35)

A contamination of the recorded signal by noise is expected. As a result, it is important

to investigate the influence of this noise on the structural response. Ideally, if a harmonic
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Figure 3.15: Statistical properties of the cumulative signal energy ¯d(t) considering the

variation of the initial conditions.

excitation, which has a constant amplitude Fa and constant frequency ω, is used N times to

excite a structure, the same response and a constant signal energy d∗ are expected in each test.

However, because of the noise signal γF , the total energy d̄t is obtained, figure 3.16, As a result,

if N test using identical excitation are performed and {d̄t} = {d̄t,1, d̄t,2, · · · , d̄t,i, · · · , d̄t,N} are

observed, where d̄t,i is associated with test i.

For the SDOF example the relationship between d̄t − d∗ and the noise γF was investigated as

follows:

1. F (t) = Fa×sinωt+γF given that γF ∼ N (0, σ2
γF

) for this example. σγF,i+1
= σγF,i

+∆σγF

where σγF,0
= 0 and ∆σγF

= 0.01 [N]

2. Running the model for N samples considering the mean values of the input parameters

given in table 3.2 the value {d̄t,1,i, d̄t,2,i, · · · , d̄t,r,i, · · · , d̄t,N,i} where r = 1, 2, ...N and

i : σγF
= σγF,i

.

3. calculating the probability P (d̄t,i − d∗ > 0|σγF,i
) as follows:

P (d̄t,i − d∗ > 0|σγF,i
) =

Nd̄t,i>d∗

N
(3.36)

4. N the size of the sample was increased until P (d̄t,i − d∗ > 0|σγF,i
) converged. Nd̄t,i>d∗

refers to the number of the samples that give d̄t,i > d∗.
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The results show that for small noise level d̄t,i ≈ d∗ and for large noise level d̄t,i > d∗, figure 3.16

(a). Assuming that the noise level is large enough to obtain P (d̄t,i > d∗) = 1, figure 3.16 (b),

the minimum value d̄t,min ∈ {d̄t,i} is the closest value to d∗ and the likelihood function for d̄,

can be written as follows:

L({d̄}|{θ}) =











0 if d̄ > d̄t,min

p({d̄}|{θ}) > 0 if 0 < d̄ < d̄t,min
(3.37)

Assuming large noise level is reasonable since the structure was excited far from its natural

frequency. As a result, the amplitude of the response is small compared to the amplitude

of the response close to the natural frequency. The signal energy of the noisy measurements

d̄ = d̄t,min − dγ are used to update the numerical model GM where dγ refers to the additional

energy because of γF . ǫd,2 = d∗−d̄ = d∗−d̄t,min+dγ is the variation of d̄ from d∗ due to γF , which

has a standard deviation σ2
d̄,2

= σ2
d̄t,min

+ σ2
γ. In the end, it is possible to write σ2

d̄
= σ2

d̄,1
+ σ2

d̄,2
.

Assuming that ǫd,2 is normally distributed and based on eq. (3.38) truncated normal distribution

f(d, d̄, σd̄,2, 0, d̄t,min), P. Robert [1995], can be used for the likelihood function.

f(d, d̄, σd̄,2, 0, d̄t,min) =
1

σd̄,2
×

φ(d−d̄
σd̄,2

)

Φ( d̄t,min−d̄

σd̄,2
) − Φ(0−d̄

σd̄,2
)

(3.38)

where

φ(
d− d̄

σd̄,2
) =

e
0.5×( d−d̄

σ
d̄,2

)2

√
2 × π

(3.39)

Φ(
0 − d̄

σd̄,2
) =

1√
2 × π

∫ 0

−∞
e

0.5×( d−d̄
σ

d̄,2
)2

(3.40)

Φ(
d̄t,min − d̄

σd̄,2
) =

1√
2 × π

∫ d̄t,min

−∞
e

0.5×( d−d̄
σ

d̄,2
)2

(3.41)
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{d̂} = [β̂]{1 θ̂i θ̂iθ̂j θ̂iθ̂j θ̂r ...} (3.43)

The residual [δ̂] between a numerical model and a Meta-model is given in eq. (3.44):

[δ̂] = [d] − [d̂] (3.44)

The regression coefficients are obtained as follows

[β̂] = [([Θ̂]T [Θ̂])−1[Θ̂][d]T ]T (3.45)

Meta-model for the SDOF example model updating

For the SDOF example, a Meta-model was used for model updating, figure 3.17. The Meta-

model was developed considering only the important parameters {θ̂} ⊆ {θ}.

Since the result of the sensitivity analysis indicated that the stiffness θ1 = k is the dominant

parameter, the Meta-model considers only the stiffness {θ̂} = {θ1}. The degree of the

polynomial equation was chosen as 2. Since there is only one parameter, there are no mixed

terms. The least-squares method was used to obtain the regression coefficients matrix [β̂]Nd×N
Θ̂
.

The Meta-model, eq. (3.46), was obtained based on the same data set used for developing the

Meta-model for sensitivity analysis. The same approach was followed to assess the statistical

properties of the residuals.

Figure 3.18 shows the statistical properties of the residuals. The results show that by

considering only the stiffness, the coefficient of determination reduced to R2 = 98.8%.

Moreover, both the histogram of the residuals, figure 3.18(a), and the normal probability

plot, figure 3.18(b), show that excluding the unimportant parameters influenced the residual

distribution. However, the lag plot, figure 3.18(c), shows that the residuals are still satisfying

the randomness condition since the residuals plot does not show a specific shape that can be

fitted by a model. Plotting the residuals versus the predicted value, figure 3.18(d), shows a

constant zero mean variation since no outlier can be observed. The results were also confirmed

by calculating the mean value of the residuals. The developed Meta-model was used to update

the stiffness. For this example:

{β̂}T = {4.67 × 10−04, 5.90 × 10−11, 3.00 × 10−06}T .

{d̂} = {β̂}T{1 θ2
1 θ1} (3.46)
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Figure 3.17: Developed Meta-model for model updating

Model updating results

In this example, the true values of the studied input parameters {θ∗} given in table 3.1 are used

to simulate the test to obtain d̄ by solving the analytical model. It was assumed that COV

of d̄ is 5% which includes the uncertainty of the structural response due to initial boundary

conditions and white noise. This value is obtained if
σ2
γF

σ2
F,γF =0

≈ 7 × 10−4. As a result, the

measurement was given as d̄ ∼ N (3376 , 1682). By applying the Bayesian inference approach

explained in section 3.5, the uncertainty of the important parameters p(θ̂) ≡ p(k) was updated

to p(θ̂|d̄) ≡ p(k|d̄) using the Meta-model in eq. (3.46). The results were compared with the

updated uncertainty using the model in eq. (3.24) and the numerical model in eq. (3.9). The

posterior was calculated by generating N = 100 samples. Using more samples does not have a

significant influence on the results. It took about 0.11 seconds to calculate the posterior density

function of the stiffness using the Meta-model in eq. (3.46) and about 0.34 seconds to update

the uncertainty of all the parameters using the model in eq. (3.24). Updating the uncertainty

of the parameters using the numerical model GM required about 1600 seconds.

The results shown in figures 3.19, 3.20 and 3.21 indicate good agreement of the posterior

density functions updated by different models. The importance of the model updating step can

be quantified in the next subsection where the probability of damage detection is computed.

In order to evaluate the quality of a set of measurements for model updating, an index QM has

been used. The developed index is limited in range [0, 1] = {QM ∈ ℜ : 0 ≤ QM ≤ 1}. Based on
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Figure 3.18: Statistical properties assessment of the residuals

the standard deviations of the Nθ̂ important parameters before updating σθ̂ and after updating

σθ̂|d̄ the index QM can be written

QM = 1 − 1

Nθ̂

N
θ̂

∑

j=1

σθ̂j |d̄

σθ̂j

(3.47)

Eq.(3.47) means that if measurements do not provide any new information to a model, then

σθ̂ = σθ̂|d̄ and QM = 0. If measurements lead to σθ̂ >> σθ̂|d̄ , then measurements contain

valuable information about the studied problem and QM ≈ 1. Obtaining 0 < QM < 1 means,

there is possibility to reduce the uncertainty by improving the quality of the measurements.

Eq.(3.47) was applied to evaluate the quality of the measurements based on the information

they provide. Given that µk =
N

∑

i=1

kipi(k|d̄)) is the mean value of the stiffness k after updating,

the standard deviation of the stiffness before updating σθ̂ and after updating σθ̂|d̄ were computed
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Figure 3.19: Prior and posterior density functions of the uncertainty of the stiffness k obtained

using the numerical model GM , the Meta-model for sensitivity analysis d and the

Meta-model for model updating d̂
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Figure 3.20: Prior and posterior density functions of the uncertainty of the mass m obtained

using the numerical model GM and the Meta-model for sensitivity analysis d

as follows:
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Figure 3.21: Prior and posterior density functions of the uncertainty of damping ratio ζ

obtained using the numerical model GM and the Meta-model for sensitivity

analysis d

σk|d̄ =
N

∑

i=1

[(ki − µk)
2pi(k)]0.5 = 1250 (3.48)

σk|d̄ =
N

∑

i=1

[(ki − µk)
2pi(k|d̄)]0.5 = 130.4 (3.49)

As a result, the quality of the measurements QM can be obtained as follows:

QM = 1 − σk|d̄

σk
= 1 − 130.4

1250
= 0.90 (3.50)

3.6 The reliability of an inspection method

The evaluation of an inspection method was accomplished by the probability of detection

POD curve. The POD curve can be obtained using different approaches. For example, an

approach was suggested in MIL-HDBK-1823A [2009] which is useful to avoid a large number of

simulated/real experiments if the relationship between the size of the damage and a structural

response can be represented using a simple linear equation. In this work, an approach was

developed and applied to more general cases. The developed method can be used if more
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than one structural response or damage indicator is used to detect damage. In this case, the

relationship between damage size and a damage indicator may take any shape. However, the

developed method requires a sufficient number of simulated/real experiments.

3.6.1 Damage indicator

In this work, the difference between a damage model θg and a damage indicator model f(θg) is

that a damage indicator model is based on the studied structural response which is chosen to

detect damage, for example, modal parameters obtained from applying a system identification

method or a structural response in time domain. The damage indicator is affected by the

variation of other input parameters and the variation of the experimental data. A damage

model represents the physical influence of studied damage on a structure or a part of it, for

example, reducing stiffness. If ǫt refers to the total uncertainty from different resources and

based on eq. (1.4) it is possible to define a damage indicator model f as follows:

f : θg → d(θg, ǫt) (3.51)

A damage indicator based on the cumulative energy of a structural response of a studied system

was used. The structural response di due to damage target size θgi was obtained by generating

samples from the posterior density functions of the important parameters p({θ̂}|{d̄}) and the

initial prior density functions of the unimportant parameters p({θ}\{θ̂}), eq. (3.52), given that

θgi ∈ [θgmin, θ
g
max]. The measurement uncertainty ǫd̄ should be considered as well.

d(θgi ) = f(GM({θ̂}, {θ} \ {θ̂}, θgi ) + ǫd̄) (3.52)

where {θ} \ {θ̂} refers to the parameters in {θ} but not in {θ̂}. A damage indicator should be

sensitive to damage only. If this is not the case, a high probability of false alarm is expected.

It is important to mention that the variation of input parameters in time is not included in this

work since the structure is investigated in a particular point of time of its life. If a monitoring

system has to be developed, the variation of input parameters in time should be included.

3.6.2 Probability of damage detection

In civil engineering structures, many sensor types and sensor locations have been used to

monitor a response of a structure. Therefore, combining and abstracting the whole system

results in a damage indicator can be a nontrivial problem. This is because of normalization

requirements and the necessity of converting some response types to fit other types before

combining them, for example, converting velocity to acceleration. As a result, several types of
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uncertainty should be considered. For example, one type of uncertainty could be the uncertainty

when measuring each quantity separately — for example, acceleration measurement uncertainty,

velocity measurement uncertainty, etc. A different kind of uncertainty can be observed when

computing further quantities from a certain measurement such as calculating acceleration from

velocity. In this case, uncertainty propagation has to be taken into account.

In this work, a method to calculate the probability of detection POD was developed based on

reliability principles. If a studied structure has a response di considering damage size θgi and

di+1 considering damage size θgi+1 and if θgi+1 ≥ θgi ⇔ di+1 ≥ di, the probability of damage

detection can be computed as follows:

POD(θg) = P (d(θg) > dc|θg) (3.53)

where dc is the threshold related to a response d. dc should be chosen by studying the influence

of the variation of other input parameters on the response d. It is possible to rewrite eq. (3.53)

as follows:

POD(θg) = 1 − P (d(θg) < dc|θg) (3.54)

Similarly, the probability of the false alarm PFA or the false positive PFP can be computed as

follows

PFA ≡ PFP = P (d(θg) > dc|θg = 0) (3.55)

It is possible to rewrite eq. (3.55) as follows

PFA ≡ PFP = 1 − P (d(θg) < dc|θg = 0) (3.56)

If Nd = n outputs {d} = {di,1, di,2, · · · , di,n} were observed given damage size θgi and {d} =

{di+1,1, di+1,2, · · · , di+1,n} were observed given damage size θgi+1 and if θgi+1 ≥ θgi ⇔ di+1,1 ≥
di,1 ∩di+1,2 ≥ di,2 ∩· · · di+1,n ≥ di,n POD(θg) and PFA can be computed based on the equations

mentioned above as follows:

POD(θg) = 1 − P (d1 < dc1 ∩ d2 < dc2 ∩ · · · ∩ dn < dcn|θg) (3.57)

PFP = 1 − P (d1 < dc1 ∩ d2 < dc2 ∩ · · · ∩ dn < dcn|θg = 0) (3.58)
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where {dc} = {dc1, dc2, · · · , dcn} are the thresholds related to the response {d} = {d1, d2, · · · , dn}.

If a model updating approach was applied using a model GM , then information obtained from

measurements {d̄} can be introduced in the POD(θg) by considering the posterior density

functions p({θ}|{d̄}) as follows:

POD(θg) = 1 − P (d1 < dc1 ∩ d2 < dc2 ∩ · · · ∩ dn < dcn|θg, d̄) (3.59)

In civil engineering, identifying the location of damage can be the most difficult problem. For

this reason, it is important to include the influence of damage location on the reliability of

global inspection methods. If damage θg is located at element elg, then the POD(θg) including

damage location can be written as

POD(θg) = 1 − P (d1 < dc1 ∩ d2 < dc2 ∩ · · · ∩ dn < dcn|θg, d̄, elgmin ≤ elg ≤ elgmax) (3.60)

where elgmin and elgmax refer to the accepted limits of damage location. In this case, PFA includes

that damage was detected but at the wrong location, elg < elgmin or xg > elgmax. In this case, the

chosen damage indicator should be able to provide information about the location of damage.

Another critical issue is multi-location damage detection. In this case, damage exists in several

locations at a structure. The reliability of a chosen inspection method can be defined based

on its ability to detect damage at all or most locations. If different types of damage were

introduced, then the reliability of the chosen inspection can be investigated for each damage

separately.

In order to evaluate the quality of a chosen inspection method for detecting a certain damage

size θg∗, an index QD has been developed based on the probability of detection of a certain

damage size and the probability of false alarm. The developed index is limited in range [0, 1],

{QD ∈ ℜ : 0 ≤ QD ≤ 1}. In this work, QD is computed as follows:

QD = POD(θg∗)(1 − PFP ) (3.61)

where POD(θg∗) is the probability of detection of a certain damage size θg∗ and PFP is the

probability of false positive or probability of false alarm PFA. If POD(θg∗) = 1 and PFP= 0,

then it is possible to detect damage θg∗ without any misleading because of the false alarm. As

a result, QD = 1 which is the ideal case. If 0 ≤ QD < 1, it is possible that the studied damage

size can be missed and/or a false alarm has to be expected.

Obtaining a reliable POD curve requires a sufficient number of samples N . It is possible to

estimate N based on the PFP, N = f(PFP ). If dci introduced in eq. (3.58) is chosen in way

that P (d1 < dc1) = P (d2 < dc2) = · · ·P (di < dci) = · · ·P (dn < dcn) and if di and dj are
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independent, where θg = 0 and i 6= j, it is possible to write:

PFP = 1 − (P (d1 < dc1|θg = 0))n (3.62)

In this work the relationship between N and PFP was assumed for a single output d, n = 1,

N = 1/PFP . For example, if PFP = 0.01 is required, it should be N ≥ 100. For n ≥ 1, N

can be calculated as follows:

N = f(P (d1 < dc1|θg = 0)) ≥ 1

1 − (1 − PFP )1/n
(3.63)

Eq. (3.63) indicates that by reducing the PFP,N should be increased. For example, if PFP=0.05

and n=5, P (d1 < dc1|θg = 0) = 0.9898. N = 1/(1 − 0.9898) ≥ 98. N should be increased until

convergence of the POD curves is obtained.

POD in the SDOF example

The method was applied to the SDOF example. The θgi ∈ [0 , 40%] ×k was used to calculate

the response di(θ
g
i ) as in eq. (3.52) with an interval ∆θg = 1%. As a result, 41 damage size

steps were investigated. The threshold was chosen PFA ≡ PFP = POD(θg|θg = 0) ≤ 0.01.

It means that if there was no damage, only 1% of the indicator values d exceeded dc and

leads to false alarm. As a result, eq. (3.55) can be used to select the threshold value that

satisfies the PFP condition. Based on eq. (3.54) and the chosen threshold value, the POD

curve can be computed. From eq. (3.63), N = 100. To ensure a constant POD, at each damage

size step N = 500 samples were generated and solved using the numerical model GM . The

total number of problems solved was 500 × 41 = 20500 times. The results show that model

updating improved the reliability of the chosen inspection method. Without model updating,

the inspection method is not reliable based on the problem definition in eq. (3.7)

In order to evaluate the inspection method for detecting 15% stiffness degradation with and

without model updating based on the index QD developed in this work, eq. (3.61) was applied,

table 3.3.





Model quality and inspection method reliability 80

3.7 Model quality and inspection method reliability

The relationship between the assessment procedure of the partial models presented in this

chapter and the reliability of an inspection method for damage detection is concluded in table

3.4.
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Chapter 4

Numerical Study: Three degrees of

freedom frame like structure

4.1 Introduction

The main objective of this example is to investigate the performance of a vibration-based

method for damage detection in three degrees of freedom system. The reliability of the

inspection method for detecting multi-locations damage scenarios is studied. Several types

of excitations were applied to compute the structural response at the considered degrees of

freedom. The POD method developed in this work is used to obtain the POD curves. In

this example, the reliability of the inspection method considers the influence of the location of

damage.

4.2 Problem definition

A three degrees of freedom (DOF) frame {x} = {x1, x2, x3} , figure 4.1, is used to illustrate the

influence of the considered uncertainty types on the reliability of a chosen inspection method.

In this example a stiffness-damping-lumped mass model, GM , was developed considering the

stiffness {θ1, θ2, θ3} = {k1, k2, k3}, the masses {θ4, θ5, θ6} = {m1,m2,m3} and the damping

ratios {θ7, θ8, θ9} = {ζ1, ζ2, ζ3}. The mass matrix [M ] is considered diagonal which means

Mi,j = 0 if i 6= j and Mi,j = mi if i = j. In this example it was assumed that the system

is linear and only modal damping was considered. The equations of motion, eq.(4.1), can be

written using the matrices in eq.(4.2), eq.(4.3) and eq.(4.4).

[M ]{ẍ} + [C]{ẋ} + [K]{x} = {Ft} (4.1)

82
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[K] = 2 ×













k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2 + k3













(4.2)

[M ] =













m1 0 0

0 m2 0

0 0 m3













(4.3)

The damping matrix is assumed as a linear combination of the mass and stiffness matrices.

The damping matrix can be written in this case as follows:

[C] = α× [M ] + β × [K] (4.4)

where:

α =
2(ζ2ω

2
n,1ωn,2 − ζ1ω

2
n,2ωn,1)

ω2
n,1 − ω2

n,2

(4.5)

β =
2(ζ1ωn,1 − ζ2ωn,2)

ω2
n,1 − ω2

n,2

(4.6)

Finding α and β requires assuming the damping ratio for two modes. The remaining damping

ratio ζ3 for the third mode can be calculated as follows

ζ3 =
α

2ωn,3
+
βωn,3

2
(4.7)

where ωn,r and ζr refer to the natural frequency and the damping ratio associated with the

mode r. The response of the structure ẍ(t) under an excitation F (t) has been obtained using

the Newmark β = 1/4 method (constant average acceleration).

The inspection method is based on observing the influence of damage θg on the measured

acceleration ẍ(t) of the system under a certain excitation F (t). The cumulative signal energy

d of the acceleration time histories for a specified time period T = te − t0 was chosen as an

objective function, eq. (3.5).

Giving that ki,0 refers to the initial (undamaged) stiffness value, i ∈ {1, 2, 3}, four damage cases

were studied:

1. θg = ∆k1 = k1,0 − k1 refers to the degradation of the stiffness of the top story θ1 = k1.
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Figure 4.1: Three degrees of freedom frame structure excited by a force F (t) at x1

2. θg = ∆k2 = k2,0 − k2 refers to the degradation of the stiffness of the middle story θ2 = k2.

3. θg = ∆k3 = k3,0 −k3 refers to the degradation of the stiffness of the ground story θ3 = k3.

4. θg = ∆k1 + ∆k2 + ∆k3 refers to the degradation of the stiffness of all storys together.

The main objective of the chosen inspection method is to detect 5% × ki,0 stiffness degradation

with POD ≥ 95% and PFP ≤ 15% considering the location of damage elg = elg∗, where elg∗

refers to the true location of damage.

Ho : ∀θg ≥ 5% × ki,0 ⇒ POD(θg) ≥ 95%, PFP ≤ 15% and elg = elg∗

H1 : The inspection method is not reliable
(4.8)

Since the developed numerical model GM was used as GE to simulate the experiments and

obtain d̄, the condition defined in eq. (3.1) was satisfied and Qv = 1.

4.3 Design of Experiments

Based on the results of the SDOF system example, a harmonic excitation F (t) = Fa sinωt that

generates an output d which is sensitive to stiffness was chosen. Since the studied structure

contains three stiffness values {k1, k2, k3}, three harmonic excitations were used. Generally,

civil engineering structures have a low fundamental frequency. In real tests, it can be difficult

to generate a dynamic harmonic excitation with low frequency and sufficient force amplitude

to obtain measurable response using accelerometers. Therefore, harmonic excitations with

frequencies larger than the fundamental natural frequencies of the structure have to be used.

In this case, it is expected that the chosen excitations may be sensitive to the mass variation
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Table 4.1: Applied excitations used to simulate the tests

Test No. Type Fa [N] frequency [Hz] / impulse duration TI [s] location

1 F1 Harmonic 160 40 x1

2 F2 Harmonic 200 50 x2

3 F3 Harmonic 250 60 x3

4 F4 Harmonic 100 20 x1

5 F5 Harmonic 125 25 x2

6 F6 Harmonic 140 30 x3

7 F7 Impulse 3000 0.025 x1

8 F8 Impulse 2000 0.022 x2

9 F9 Impulse 1500 0.02 x3

as well. Another set of three harmonic excitations in a higher frequency range compared to the

frequencies of the first excitation group was chosen to obtain sufficient information about the

influence of the mass on the response d. Since the dynamic response can have a transient state

before reaching the required steady state, the influence of damping could be unavoidable during

the transient state. Therefore, impulse excitations were used to obtain more information about

modal damping ratios.

Three excitations were applied at the top x1, three at x2 and three at x3. In case of the harmonic

excitations, lower force amplitudes and frequencies were applied at the top to avoid continuous

large response amplitude, which may be destructive. As a result, The force amplitudes and

the frequencies of the harmonic excitation applied at x3 are higher than at the top and in the

middle. Only impulse amplitudes were chosen independently of the position of the force of the

structure. table 4.1.

The true values of the input parameters {θ∗} were chosen as in table 4.2. As a result, the

true natural frequencies fn
∗ of the studied frame are {f ∗

n1, f
∗
n2, f

∗
n3} = {5.27 , 11.36 , 16.82} Hz.

Therefore, the time step was chosen as ∆t = 0.002 s to ensure a robust numerical solution for

eq.(4.1). The damping ratios for the first two modes were assumed as follows: ζ1 = 1.7% and

ζ2 = 3.1%. By applying the equations (4.5), (4.6), α = 1.9149 and β = 8.0879 × 10−4. The

damping ratio of the third mode ζ3 = 5.18% was calculated following the eq.(4.7).

Table 4.2: True values of the studied input parameters. ζ3 was calculated following the eq.(4.7)

θ∗
1 = k1 θ∗

2 = k2 θ∗
3 = k3 θ∗

4 = m1 θ∗
5 = m2 θ∗

6 = m3 θ∗
7 = ζ1 θ∗

8 = ζ2 θ∗
9 = ζ3

[kN/m] [kN/m] [kN/m] [kg] [kg] [kg] % % %

{θ∗} 1616 3168 4704 507.5 757.5 1000 1.7 3.1 5.18



Sensitivity analysis results 86

p(θ) =











1

θmax − θmin
if θmin ≤ θ ≤ θmax

0 otherwise
(4.9)

The acquisition time was chosen as 10 s to obtain a steady state response and to gain

sufficient information related to the influence of damping on the structural response. The

prior probability density function p(θ) of a parameter θ was considered as a bounded uniform

distribution in a range θmin ≤ θ ≤ θmax, Eq. (4.9), table 4.3. If more accurate information

is required, more experiments and investigations can be done to improve the prior knowledge

of these parameters {θ}. A Latin hypercube sampling method was used to generate N = 500

samples from the prior probability density functions. The number of samples N was chosen to

obtain sufficient information about the variation of the structural response d due to {θ} which

helps to develop Meta-models that satisfy the statistical conditions. The structural response

ẍ(t) at each degree of freedom and for each excitation was computed for each sample. The

cumulative signal energy values d of the acceleration time histories ẍ(t) were calculated for

each degree of freedom. The initial conditions were chosen as x(0) = ẋ(0) = 0.

4.4 Sensitivity analysis results

Similar to the SDOF system example, the method described in section 3.4 was applied. Meta-

models {d} were developed to represent the relationship between the cumulative signal energy

{d} and the input parameters {θ}. The data set which includes the N = 500 samples, calculated

in the previous subsection, was used. The statistical properties of the residuals were examined

to ensure that they satisfy the requirements described in section 3.4.4. The Total-effect index

sT values, table 4.4, were calculated using {d} for all excitations and input parameters {θ}. In

order to evaluate the quality of the chosen design of experiment, eq. (3.13) was applied. The

results in table 4.4 show that the quality of a design of experiment is based on the objective

Table 4.3: The statistical properties of the stiffness, masses and damping ratios of the studied

structure. ζ3 was calculated following the eq.(4.7)

θ1 = k1 θ2 = k2 θ3 = k3 θ4 = m1 θ5 = m2 θ6 = m3 θ7 = ζ1 θ8 = ζ2

[kN/m] [kN/m] [kN/m] [kg] [kg] [kg] % %

µ 1600 3200 4800 500 750 1000 2.00 3.00

Min 1530.9 3060.2 4592.6 489.2 733.8 978.4 1.57 2.35

Max 1669.1 3338.3 5007.4 510.8 766.2 1021.6 2.43 3.65

COV 0.025 0.025 0.025 0.0125 0.0125 0.0125 0.125 0.125
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Figure 4.2: Time series and Fourier transforms of the excitation forces applied at x1 and used

to simulate the modal tests

of this experiment. If θg = ∆k1, then only information about k1 is required. In this case,

an optimal design should give sT = 1 for the desired parameter k1 and sT = 0 for all other
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Figure 4.3: Time series and Fourier transforms of the structural response of the studied

structure at x1

parameters. However, in this example, test No.2, dx1 gives sT = 0.68 for k1 and the influence

of m1 and m2 is observed by sT = 0.17 for m1 and sT = 0.12 for m2. Therefore, QDOE ≈ 0.68.
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Test No.1, dx2 gives sT = 0.66 for k1. Similarly the design of experiment obtained in case of

θg = ∆k2 and θg = ∆k3 can be evaluated, table 4.5. If θg = ∆k1 +∆k2 +∆k3, then information

about k1, k2 and k3 is required.

In conclusion, an optimal design would be that
∑

sT for the desired parameter is 1 and
∑

sT

for the undesired parameter is 0. In this case QDOE,optimal = 1.00. However, in most cases,

undesired parameters could influence the structural response of the studied system. As a

result, low probability of damage detection and/or high rate of false alarm has to be expected.

Solving this problem may require conducting more experiments to gain more information about

the important parameters. In this example, table 4.4 shows that tests 1, 2, 3, 4, 5 and 6 provide

also information about m1,m2,m3 since large sT values were obtained. Similarly, tests 7, 8

and 9 provide information about ζ1, ζ2, ζ3.

In table 4.4 the input parameters that have sT ≥ 0.05 were marked in red. Choosing this

threshold, sT ≥ 0.05, is to eliminate nonsensitive parameters but not k3 from the Meta-models.

This means, the input parameters that have sT > 0.05 were used to develop the Meta-models

for model updating {d̂} in the next step.

∀θ̂ : sTθ̂ ≥ 0.05 (4.10)
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Table 4.4: Total-effect index sT values calculated for all excitations, input parameters {θ} and

computed response {d}

Force DOF k1 k2 k3 m1 m2 m3 ζ1 ζ2

F1 = 160 sin(40t)

x1 0.02 0.00 0.00 1.01 0.00 0.00 0.00 0.00

x2 0.66 0.01 0.00 0.14 0.18 0.00 0.01 0.01

x3 0.03 0.00 0.00 0.02 0.01 0.01 0.03 0.93

F2 = 200 sin(50t)

x1 0.68 0.01 0.01 0.17 0.12 0.00 0.00 0.02

x2 0.00 0.01 0.00 0.00 1.01 0.00 0.00 0.00

x3 -0.01 0.7 0.01 0.00 0.18 0.12 -0.01 0.00

F3 = 250 sin(60t)

x1 0.02 -0.02 -0.01 -0.02 -0.03 -0.02 0.01 0.91

x2 0.09 0.64 0.09 0.12 0.17 0.18 0.09 0.12

x3 0.00 0.00 0.01 0.00 0.00 1.04 0.00 0.01

F4=100 sin(20t)

x1 0.28 0.01 -0.01 0.68 0.00 -0.01 -0.01 -0.01

x2 0.49 0.25 0.00 0.08 0.2 0.00 0.00 0.00

x3 0.21 0.53 0.03 0.03 0.03 0.1 -0.01 0.00

F5 = 125 sin(25t)

x1 0.65 0.03 0.01 0.15 0.17 0.01 0.01 0.01

x2 0.05 0.18 -0.01 0.00 0.75 -0.01 0.00 -0.01

x3 -0.01 0.7 0.01 -0.01 0.14 0.15 -0.01 -0.01

F6 = 140 sin(30t)

x1 0.03 0.00 0.00 0.04 0.04 0.04 0.01 0.61

x2 0.00 0.7 0.02 0.00 0.18 0.18 0.01 0.00

x3 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00

F7 =











3000 sin(125.66t) if t ≤ 0.025 [s]

0 if t > 0.025 [s]

x1 -0.02 -0.02 -0.02 0.12 -0.01 -0.02 0.09 0.90

x2 0.02 0.02 0.02 0.00 0.03 0.02 0.09 0.91

x3 0.05 0.00 0.00 0.00 0.00 0.04 0.09 0.91

F8 =











2000 sin(142.8t) if t ≤ 0.022 [s]

0 if t > 0.022 [s]

x1 0.00 -0.04 -0.04 0.02 -0.01 -0.04 0.10 0.92

x2 0.01 0.00 0.02 -0.01 0.12 0.01 0.10 0.93

x3 0.01 0.01 0.01 0.01 0.02 0.02 0.10 0.94

F9 =











1500 sin(157.08t) if t ≤ 0.020 [s]

0 if t > 0.020 [s]

x1 -0.05 -0.05 -0.05 0.03 -0.02 -0.01 0.12 0.91

x2 0.01 0.02 0.01 0.01 0.02 0.02 0.10 0.88

x3 0.04 0.02 0.02 0.01 0.04 0.07 0.14 0.85
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Table 4.5: The quality of the DOE considering the excitation type and the sensor position

Force DOF QDOE(∆k1) QDOE(∆k2) QDOE(∆k3) QDOE(∆k1 + ∆k2 + ∆k3)

F1 = 160 sin(40t)

x1 0.02 0.00 0.00 0.02

x2 0.65 0.01 0.00 0.66

x3 0.03 0.00 0.00 0.03

F2 = 200 sin(50t)

x1 0.67 0.01 0.01 0.69

x2 0.00 0.01 0.00 0.02

x3 0.00 0.71 0.01 0.71

F3250 sin(60t)

x1 0.02 0.00 0.00 0.00

x2 0.06 0.43 0.06 0.55

x3 0.00 0.00 0.01 0.01

F4 = 100 sin(20t)

x1 0.30 0.01 0.00 0.30

x2 0.48 0.25 0.00 0.73

x3 0.23 0.58 0.03 0.84

F5 = 125 sin(25t)

x1 0.63 0.03 0.01 0.66

x2 0.05 0.19 0.00 0.23

x3 0.00 0.73 0.01 0.73

F6 = 140 sin(30t)

x1 0.04 0.00 0.00 0.04

x2 0.00 0.64 0.02 0.66

x3 0.00 0.00 0.00 0.00

F7 =











3000 sin(125.66t) if t ≤ 0.025 [s]

0 if t > 0.025 [s]

x1 0.00 0.00 0.00 0.00

x2 0.02 0.02 0.02 0.05

x3 0.05 0.00 0.00 0.05

F8 =











2000 sin(142.8t) if t ≤ 0.022 [s]

0 if t > 0.022 [s]

x1 0.00 0.00 0.00 0.00

x2 0.01 0.00 0.02 0.03

x3 0.01 0.01 0.01 0.03

F9 =











1500 sin(157.08t) if t ≤ 0.020 [s]

0 if t > 0.020 [s]

x1 0.00 0.00 0.00 0.00

x2 0.01 0.02 0.01 0.04

x3 0.03 0.02 0.02 0.07
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4.5 Model updating results

Meta-models {d̂} were developed for model updating to reduce the computational effort. As

mentioned before, the input parameters that have sT ≥ 0.05 were considered and used to select

the important parameters {θ̂} ⊆ {θ}. Applying the Bayesian updating approach explained

before in section 3.5, the posterior density functions p({θ}|{d̄}) of the updated parameters

were computed, figure 4.4, table 4.6. To include the uncertainty due to the assumed initial

condition and noise because of ambient vibration ǫd̄ ∼ N (0, (0.02d̄)2) was considered when

p({θ}|{d̄}) was computed. Larger ǫd̄ may lead to lose information about k3. More accurate

value could be chosen for ǫd̄ if the ambient vibration excitation was investigated.

In order to evaluate the quality of the measurements for model updating, the index QM given

in eq.(3.47) was computed, table 4.7.

4.6 Reliability of the inspection method

4.6.1 Damage indicator

The method developed in section 3.6.2 was applied. θgi ∈ [0 , 20%] × k0 was used to calculate

the response d(θg) as in eq. (3.52) with an interval ∆θg = 1% × k0. In this example, it was

assumed that PFP = POD(θg|θg = 0, d) ≤ 0.01 for each response d. It means that if there

was no damage, only 1% of the indicator values exceeds dc and leads to a false alarm. As

a result, eq. (3.55) can be used to select the threshold value for each response that satisfies

the PFP condition. Based on eq. (3.59) and the chosen threshold values, the POD curves

could be computed. Based on eq. (3.63) if the number of the outputs is n = 27 (9 tests × 3

degrees of freedom), then the minimum number of samples is N = 167 and PFP ≤ 0.16. To

obtain constant POD curves, N = 500 samples were generated and solved for each θg + ∆θg

using the numerical model GM for each applied excitation. The total number of samples is

500 × 21 × 9 = 94500 times. It is very important to mention that sometimes the relationship

Table 4.6: The statistical properties of the posterior density functions of the input parameters.

ζ3 was calculated following the eq.(4.7)

θ1 = k1 θ2 = k2 θ3 = k3 θ4 = m1 θ5 = m2 θ6 = m3 θ7 = ζ1 θ8 = ζ2

[kN/m] [kN/m] [kN/m] [kg] [kg] [kg] [%] [%]

µ 1602.7 3155.4 4844 505.4 754.6 1003.8 1.83 3.16

σθ̂|d̄ 3.9 6.9 74.96 0.93 1.1 1.7 0.028 0.038

COV 0.0024 0.0022 0.015 0.0018 0.0013 0.001 0.015 0.012
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Table 4.7: The quality of the measurements based on damage scenario

θ̂i k1 k2 k3 k1 + k2 + k3

σθ̂i
39.920 79.840 119.760

σθ̂i|d̄
3.9 6.9 74.96

QM 90% 91% 37% 88%
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Figure 4.4: Posterior density functions p({θ}|{d̄}) of the input parameters computed using

Bayesian updating method. ζ3 was calculated following the eq.(4.7)

between damage size and a structural response can be an inverse relationship, on other words,

the damage size increment causes a structural response decrement. As a result, eqs. (3.55) and

(3.59) and should be modified as follows:
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PFP = 1 − P (d(θg) > dc|θg = 0) (4.11)

POD(θg) = 1 − P (d1 > dc1 ∩ d2 > dc2 ∩ · · · ∩ dn > dcn|θg, p({θ}|{d̄})) (4.12)

4.6.2 Damage location

An inspection method is reliable if damage is detected and located correctly. As a result,

false alarm includes detecting damage at a wrong location. The relationship between damage

size and a structural response was used as a damage pattern DP (θg). The defined damage

patterns help to classify the type of damage and/or define its location. For example, in case

of the first θg = ∆k1 and the fourth θg = ∆k1 + ∆k2 + ∆k3 damage scenarios, if the damage

indicator, which is the cumulative signal energy d(θg), was computed from ẍ(t) obtained at the

top of the studied frame x1 under an excitation F4(t) for both undamaged and damaged states,

then a decrement damage indicator value was observed if damage size increases. However, in

case of the second θg = ∆k2 and third θg = ∆k3 damage scenarios, no relationship between

damage and the damage indicator was observed, figure 4.5. This observation can be used to

develop a concept of damage patterns which can be unique for each studied damage scenario.

In this work, a damage pattern was defined as 1 if a proportional relationship between damage

size and damage indicator was observed and -1 if an inverse relationship between damage size

and damage indicator was observed. If the damage indicator is not sensitive to damage then

the damage pattern value was 0, eq. (4.13). In order to obtain a reliable inspection method

considering damage location, the defined damage patterns should be unique for each studied

damage scenario. The damage patterns DP (θg) for the studied damage scenarios are listed

in tables 4.8, 4.9, 4.10 and 4.11. The results show that each damage causes a unique damage

pattern which indicates a reliable inspection method if damage location is considered. For test

No. 7, 8 and 9 DP (θg) = 0.

DP (θg) =



















































1 if ∆di/∆θ
g > 0

−1 if ∆di/∆θ
g < 0

0 if ∆di/∆θ
g = 0

(4.13)
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Table 4.8: Damage patterns DP (θg) for the first damage scenario θg = ∆k1

F1 F2 F3 F4 F5 F6

dx1 0 -1 -1 -1 -1 -1

dx2 -1 0 0 -1 -1 0

dx3 -1 0 0 -1 -1 0

Table 4.9: Damage patterns DP (θg) for the second damage scenario θg = ∆k2

F1 F2 F3 F4 F5 F6

dx1 0 0 0 0 -1 -1

dx2 0 0 -1 -1 -1 -1

dx3 0 -1 0 -1 -1 -1

Table 4.10: Damage patterns DP (θg) for the third damage scenario θg = ∆k3

F1 F2 F3 F4 F5 F6

dx1 0 0 1 0 0 0

dx2 0 0 0 -1 0 -1

dx3 0 -1 0 -1 -1 -1

Table 4.11: Damage patterns DP (θg) for the fourth damage scenario θg = ∆k1 + ∆k2 + ∆k3

F1 F2 F3 F4 F5 F6

dx1 0 -1 -1 -1 -1 -1

dx2 -1 0 -1 -1 -1 -1

dx3 -1 -1 0 -1 -1 -1

4.6.3 Probability of detection curves

The POD curves were computed based on eq. (3.59) and the threshold value dc,i which was

selected to satisfy the false alarm condition PFPi = POD(θg|θg = 0) ≤ 0.01 for each output di.

The results show that the reliability of the chosen inspection method depends on the location of

the studied damage. A stiffness degradation of 5% at the top and middle storys were detectable

with a POD = 100% and PFP = 6%. However, the probability of detecting similar damage

in the lower story is POD = 42% and PFP = 7.5%. Moreover, damage at multiple locations

will be detected faster than damage in one location, figure 4.6.

The quality of the inspection method was evaluated by calculating QD for each studied damage

scenario by applying eq. (3.61), table 4.12. Based on the problem definition presented in
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Figure 4.5: Damage pattern DP (θg) for different damage cases

eq. (4.8), the inspection is not reliable to detect the degradation of the stiffness k3 at the

ground story of the structure. As a solution, better design of experiments can be developed by

choosing different excitation properties to gain more information about k3.

Table 4.12: Reliability of the inspection method for detecting 5% stiffness degradation for

different damage scenarios based on QD including model updating

θg QD(θg = ∆k1) QD(θg = ∆k2) QD(θg = ∆k3) QD(θg = ∆k1 + ∆k2 + ∆k3)

5 % ki,0 0.94 0.94 0.39 0.94
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Chapter 5

Experimental Study

5.1 Steel frame structure

5.1.1 Introduction

The performance of a vibration-based inspection method for damage detection is tested by

applying the strategy developed in this work. The experimental models of the studied structure

and damage are presented. The modal parameters obtained from initial experiments are used

to design the experiments for damage detection.

A numerical model has been developed to perform a statistical study. The reliability of the

inspection method is evaluated by taking into account the influence of damping, the number of

the sensors, the location and the frequency of the excitation.

5.1.2 Problem definition and experimental test setup

The studied structure is a single-span-one-story steel frame structure. The length of the beam

is 2 m measured between the centers of the columns. The height of the frame is 2 m measured

between the base level and the top of the beam. The frame was constructed from hollow steel

cubes connected to each other using bolts. These cubes can be arranged and connected to

create different types of structures, for example, multi-story structures, tower, etc. Moreover,

it is possible to replace any element, for example, by a 3D hinge which can be considered as a

damage model, figure 5.1. However, using these cubes brings complexity to the numerical model

because of the nonuniform cross-sections and the connection conditions between the cubes.

The frame contains 23 steel cubes. The interface connections were realized using 8 bolts. Cubes

number 1 and 23 according to figure 5.2 were fixed to steel plates using 8 bolts for each, and the

plates were fixed to the ground. Cubes number 9 and 15 which connect the beam to the columns

98
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(a) Studied structure

constructed from steel

cubes

Hinge 1

Hinge 2

Stiffening element used to fix the hinge

Steel cube

L = 2 m

h = 2 m

x

z
y

(b) A sketch describes the geometry and the elements of the studied structure

Figure 5.1: Studied single-span one-story steel frame structure and its elements
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were replaced by hinges. It was possible to increase the stiffness of a hinge by adding up to 4

steel stiffening elements. As a result, the hinge is blocked if the 4 stiffening elements were fixed.

Removing the stiffening elements increases the flexibility of the beam-column connection.

Five -3-axial-accelerometers were used to conduct a dynamic modal test. The accelerometers

have been deployed following 3 setups, figure 5.2. As a result, the structural response at 11

points of the frame was measured. The setups were combined using reference sensors. The first

reference sensor was placed on one of the columns, at cube 6, close to the top. The second was

placed on the top of the beam at cube 14, table 5.1. The test setups were designed in a way that

a trade-off was obtained between the number of sensors, the number of measurement points

and the number of setups. Based on the orientation of the sensors, the coordinate system of

the frame was defined as follows: x: vertical, y: longitudinal (in-plane) and z: lateral (out of

plane).

Five damage cases were studied, table 5.2. In this example, the damage was created by releasing

the hinge at one or/and both sides of the beam by removing the stiffening elements diagonally,

figure 5.3.

Figure 5.2: Sensors locations in each test setup
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Table 5.1: Sensors locations for each test setup

Sensor No
Setup No

1 2 3

1 cube 6 (Refe.) cube 6 (Refe.) cube 6 (Refe.)

2 cube 14 (Refe.) cube 14 (Refe.) cube 14 (Refe.)

3 cube 8 cube 2 cube 4

4 cube 12 cube 10 cube 16

5 cube 22 cube 18 cube 20

Table 5.2: Studied damage cases

Damage case Description

1 Both hinges are fixed

2 Hinge at cube number 9 is half released, Hinge at cube

15 is fixed

3 Hinge at cube number 9 is completely released, Hinge

at cube 15 is fixed

4 Hinge at cube number 9 is completely released, Hinge

at cube 15 half released

5 Both hinges are completely released

The chosen inspection method was applied to obtain a damage size θg that can be detected with

a probability of detection POD = P1 ∈ [0, 1] and a probability of false alarm PFP = P2 ∈ [0, 1]

after reaching damage case i (θg > θgi ) and before reaching damage case i+1 (θg < θgi+1), where

i = 1, 2, 3, 4. The problem definition can be written as follows:

Ho : ∀θg : θg ∈ [θgi , θ
g
i+1] ⇒ POD(θg) ≥ P1, PFP ≤ P2

H1 : The inspection method is not reliable
(5.1)

In this example, the reliability of the inspection method was tested to detect damage θg given

that θg1 < θg < θg2:

Ho : ∀θg : θg ∈ [θg1, θ
g
2] ⇒ POD(θg) ≥ 95%, PFP ≤ 5%

H1 : The inspection method is not reliable
(5.2)
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(a) Completely released hinge (b) Half released hinge by removing 2 stiffening

elements diagonally

(c) Completely fixed hinge by 4 stiffening elements (d) Steel cubes connected together to construct the

structure

Figure 5.3: Hinge and cube elements used to construct the frame and introducing damage in

the physical model
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5.1.3 Modal parameters

A modal test was conducted using impulse excitations applied at cube number 6 in the y-

direction (in-plane), cube number 14 in the z-direction, and cube number 14 in the vertical

direction. Six tests were performed: 2 in each direction. The impulse excitation is similar

to what figure 5.4 shows. The goal was to obtain the modal parameters (natural frequencies

{fn,E}, mode shapes [φE] and damping ratios {ζE}) of the frame and their statistical properties.

Figure 5.5 shows an output acceleration signal recorded at cube 14 (reference No. 2) in case of

applying the impulse at cube number 6 in the y-direction. The stochastic subspace identification

method (data-driven) was applied following a procedure similar to the procedure described in

appendix C to analyze the acceleration signals recorded at the 11 points shown in figure 5.2 to

extract the modal parameters of the frame.

In the MACEC toolbox, Reynders et al. [2014], 13 nodes were defined by assigning the (x, y, z)

coordinates to each node measured from the bottom left node which is given (0, 0, 0) coordinates.

Eleven nodes [1 − 11] define the positions of the sensors which were placed on the structure.

The rest two nodes [0, 12] represent the positions where the structure was fixed to the base.

Each node has a degree of freedom in each direction X, Y , and Z. A master-slave relationship

should be defined to visualize nodes 0 and 12 later when plotting the mode shapes since those

nodes were not measured. The node 1, which is the neighbor node of the node 0, was chosen

as a master node for node 0 which is the slave node. The DOFs (X, Y, Z) of the node 0 were

defined as a function of the DOFs (X, Y, Z) of the master node 1 as follows: X0 = 0 × X1,

Y0 = 0 × Y1, Z0 = 0 × Z1. The same relationship was defined between node 11 as a master

node and node 12 as a slave node.

Showing the connections between the nodes when visualizing the mode shapes were defined

by assigning beam elements between each two neighbor nodes. The measurement files for

each setup which are saved in text-like format were selected and loaded to MACEC. Each file

contains the acceleration signals measured in X, Y , and Z directions for each node in each

setup. Since each setup contains the measurements of 5 sensors, 5.1, the number of signals is

3 × 5 = 15. Each signal contains several impulse responses. The duration of each signal is at

least 2 minutes.

The signal should be transformed into MCSIGNAL type (to be recognized by MACEC) before

processing it. In the processing step, each channel (signal) can be visualized and checked if the

values in the frequency domain are reasonable. The frequency rate was reduced from 4096 Hz

to 512 Hz for each channel before saving the new signal for further processing.

Next, each signal (channel) should be coupled to the associated node which was defined

before. In this step, the node, the channel and the direction should be selected. For system

identification, the Reference-based data-driven stochastic subspace identification (SSI-cov/ref)

was applied after applying the previous step to each setup. The node number 3 and node
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number 7 were chosen as references. The maximum system order was chosen 200.

After the analysis was finished, the mode should be chosen by selecting a point for each model

from the stabilization diagram. When selecting the points, it is crucial to take into account

that the imaginary part of the values of the mode shape is close to zero, the damping ratio is

reasonable (for example, the damping ratio should not be 100 %). Moreover, the modal phase

collinearity (MPC) value, which is a dimensionless measure to quantify the spatial consistency

of the identification results, should be close to 1 in case of real modes. The frequencies, the

damping ratios, and the mode shapes can be saved into text files for further processing. The

described procedure above was applied to all six tests and each damage case. The mean values

and the standard deviations of the frequencies and damping ratios are calculated from the six

conducted tests. The extracted mode shapes are similar for the different tests.

Figures 5.6 and 5.7 show the first 12 mode shapes extracted from the excitations applied at cube

number 6 in the y-direction (in-plane) for each studied damage case. For damage case 4 and 5,

the order of the 1st and the 2nd mode shapes is switched, table 5.5. Mode shapes 3 to 6 show no

significant changes due to the studied damage. Quantifying the variation in mode shapes 7 to 12

due to damage requires a larger number of sensors. The natural frequencies are shown in table

5.3. The results indicate significant changes in the natural frequencies, especially for modes 3, 6

and 12, because of releasing the stiffeners. Table 5.4 presents the extracted damping ratios. For

some modes, especially for mode 3, the damping ratio increases if the stiffening elements are

removed. More information about extracting the statistical properties of the modal properties

in table 5.3 and table 5.4 can be found in Reynders [2012].
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Figure 5.4: The impulse excitation F (t) (a) applied at cube number 6 and its |FFT| (b)
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Figure 5.5: The response of structure recorded at cube 14 (reference No. 2) (a) and its |FFT|
(b)

Table 5.3: Natural frequencies fn,E [Hz] of the frame for the studied damage cases

Case 1 Case 2 Case 3 Case 4 Case 5

µ σ µ σ µ σ µ σ µ σ

f1 8.16 0.005 8.17 0.019 8.17 0.005 7.47 0.029 6.41 0.030

f2 10.10 0.008 9.44 0.024 8.88 0.018 8.35 0.006 8.42 0.015

f3 18.18 0.010 17.02 0.067 15.45 0.025 14.40 0.088 11.53 0.063

f4 49.03 0.074 49.30 0.093 48.66 0.013 47.20 0.116 44.71 0.012

f5 65.33 0.029 64.96 0.014 62.71 0.036 59.51 0.093 58.24 0.010

f6 79.73 0.054 77.33 0.218 72.44 0.027 64.78 0.074 60.29 0.067

f7 83.93 0.030 83.25 0.023 82.01 0.037 78.98 0.093 75.05 0.044

f8 86.30 0.025 85.40 0.044 84.62 0.040 82.52 0.038 79.14 0.030

f9 104.71 0.074 102.87 0.012 100.34 0.025 99.31 0.139 97.81 0.059

f10 110.51 0.042 108.13 0.068 105.48 0.020 100.69 0.193 100.29 0.157

f11 139.14 0.177 135.67 0.095 126.58 0.166 122.33 0.375 119.87 0.063

f12 165.74 0.134 145.56 0.122 136.67 0.074 128.23 0.275 123.58 0.070

5.1.4 Results under harmonic excitations

Forced vibration test

A shaker was connected to the structure using magnets to produce harmonic excitations which

can be sensitive to the studied damage similar to the numerical study introduced in the previous

chapter. Since the natural frequencies presented in the previous section show that mode 3, 6
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Table 5.4: Damping ratios ζE [%] of the frame for the studied damage cases

Case 1 Case 2 Case 3 Case 4 Case 5

µ σ µ σ µ σ µ σ µ σ

ζ1 0.20 0.060 0.18 0.330 0.19 0.710 0.73 0.920 0.84 1.300

ζ2 0.20 0.005 0.23 0.200 0.28 0.165 0.25 0.249 0.21 0.271

ζ3 0.22 0.130 0.27 0.063 0.53 0.122 0.81 0.080 1.90 0.630

ζ4 0.11 0.009 0.10 0.031 0.15 0.020 0.18 0.262 0.16 0.006

ζ5 0.07 0.010 0.09 0.007 0.17 0.015 0.17 0.022 0.17 0.007

ζ6 0.13 0.021 0.21 0.230 0.19 0.020 0.35 0.032 0.36 0.027

ζ7 0.13 0.120 0.33 0.011 0.28 0.017 0.25 0.296 0.29 0.013

ζ8 0.13 0.014 0.11 0.080 0.14 0.034 0.36 0.296 0.60 0.029

ζ9 0.11 0.033 0.12 0.009 0.16 0.019 0.18 0.008 0.54 0.132

ζ10 0.45 0.020 0.57 0.017 0.54 0.008 0.83 0.082 0.26 0.051

ζ11 0.16 0.035 0.33 0.127 0.32 0.132 0.25 0.036 0.15 0.043

ζ12 0.16 0.057 0.73 0.037 0.20 0.025 0.36 0.096 0.30 0.241

Table 5.5: The description of the mode shapes

Case 1 Case 2 Case 3 Case 4 Case 5

φE,1 out of plan (z) out of plan (z) out of plan (z) in plan (y) in plan (y)

φE,2 in plan (y) in plan (y) in plan (y) out of plan (z) out of plan (z)

φE,3 out of plan (z) out of plan (z) out of plan (z) out of plan (z) out of plan (z)

φE,4 in plan (x) in plan (x) in plan (x) in plan (x) in plan (x)

φE,5 out of plan (z) out of plan (z) out of plan (z) out of plan (z) mix (y,z)

φE,6 in plan (y) in plan (y) in plan (y) in plan (x) mix (x,y)

φE,7 in plan (y) mix (y,z) out of plan (z) out of plan (z) mix (y,z)

φE,8 out of plan (z) in plan (x) in plan (x) in plan (y) in plan (x)

φE,9 mix (x,z) out of plan (z) out of plan (z) mix (x,z) mix (x,z)

φE,10 mix (x,z) mix (x,z) mix (x,y) in plan (x) mix (x,z)

φE,11 in plan (x) mix (x,z) mix (x,z) mix (x,z) mix (x,z)

φE,12 mix (y,z) mix (x,z) out of plan (z) mix (y,z) mix (x,z)

and 12 are significantly influenced by the studied damage model, harmonic excitations with

frequencies of {fF} = {20, 30, 60, 170}T Hz were used separately to excite the structure. The

frequencies of the excitations were also chosen considering the lowest frequency that the shaker
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Figure 5.6: Mode shapes [φE] from 1 to 6: case 1 (black), case 2 (red), case 3 (green), case 4

(blue), case 5 (pink)

can produce, which is, in this case, fF,1 = 20 Hz, with a sufficient force amplitude. It was

intended to keep the frequencies {fF} as low as possible to obtain a structural response which
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Figure 5.7: Mode shapes [φE] from 7 to 12: case 1 (black), case 2 (red), case 3 (green), case 4

(blue), case 5 (pink)

is essentially sensitive to the stiffness of the structure. Moreover, the frequencies {fF} were

chosen avoiding the resonance frequencies of the frame. Exciting the structure close to its
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Figure 5.8: The acceleration output signal recorded using an accelerometer placed at the

shaker (a) and its |FFT| (b)

resonance frequencies produces a structural response which is sensitive to the variation of all

physical parameter (mass, stiffness, damping). As a result, a large false alarm can be observed.

The tests were performed as follows:

1. The shaker was placed at cube number 6 close to the first reference sensor and oriented

to produce a harmonic excitation in longitudinal direction y (in-plane). After that, four

independent modal tests were performed.

2. The shaker was moved to the cube number 14 close to the second reference sensor and

oriented to produce a harmonic excitation in the vertical direction x (in-plane). Then,

four independent modal tests were performed.

3. The described test procedure was applied for each setup and repeated for each studied

damage case.

An accelerometer was placed on the shaker to measure its output signal. Figure 5.8 shows

the acceleration output signal recorded using an accelerometer placed at the shaker when an

excitation with the frequency of fF = 20 Hz was applied.

The test procedure was arranged as follows:

1. An excitation signal F = Fa sinωt was produced in a desktop computer and transferred

to an amplifier

2. The amplitude of the signal was amplified to a certain level before it was transferred to

the shaker. The amplification level was chosen such that no large forces were produced,

but it was possible to recognize the signal by most of the sensors, figure 5.10. The chosen

force amplitude was constant for all damage cases.
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Table 5.6: Arrangement of channels used to record the response and the corresponded cubes

number where the sensors were placed

Channel Nr. Channel label Channel Nr. Channel label Channel Nr. Channel label Cube Nr.

1 x1 12 y1 23 z1 2

2 x2 13 y2 24 z2 4

3 x3 14 y3 25 z3 6

4 x4 15 y4 26 z4 8

5 x5 16 y5 27 z5 10

6 x6 17 y6 28 z6 12

7 x7 18 y7 29 z7 14

8 x8 19 y8 30 z8 16

9 x9 20 y9 31 z9 18

10 x10 21 y10 32 z10 20

11 x11 22 y11 33 z11 22

3. After the response of the structure reached its steady state under the given excitation; the

acquisition system was started to save the response recorded by 5 sensors × 3 channels

= 15 channels and one channel to record the output of the shaker.

The sampling frequency is ∆f = 4096 Hz and the acquisition time is T = 60 second. It is

important to mention that the environmental conditions at the laboratory were constant for

all test phases. Therefore, the influence of the environmental conditions on the test could be

neglected. The channels of the sensors were arranged as shown in table 5.6.

Damage indicator

Similar to the numerical study introduced in the previous chapter, the cumulative signal energy

d of the structural response [ü] = [ẍ, ÿ, z̈] was used as a damage indicator. A certain procedure

has been followed to obtain the cumulative signal energy d̄t,min from measurements. The reason

of choosing d̄t,min is explained in chapter 3, section 3.5.3. The following steps are applied to

obtain d̄t,min:

1. The frequency rate was reduced from 4096 Hz to 512 Hz.

2. The first and the last 5 s of the signal were ignored to avoid any possible influence from

starting and ending the recording process. As a result, 50 s were used to compute the

signal energy.

3. A time window which has a length of t = 5 s (512 × 5 = 2560 time points) was moved

between j = 1 to j = 45×512, eq. (5.3), where j refers to the number of the time window.
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(c) The structural response recorded at cube 12

under harmonic excitations: fF = 30 Hz applied in

y direction
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Figure 5.9: Examples of the recorded structural response under harmonic excitations

The size of the time window, which depends on the frequency of the excitation, must be

fixed for all damage cases. In this example, each window contains 100 cycles if fF,1 = 20

Hz is applied and 850 cycles in case of fF,1 = 170 Hz. The size of the time window can

be extended if necessary to obtain more information about the structural response of the

studied system. However, the size of the time window has to be extended for all damage

cases equally.

dt,j = ∆t
te/∆t
∑

l=ts/∆t

ü2(l) (5.3)

4. The cumulative signal energies of each channel under each excitation were calculated for
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(ÿ
(t
))
|

f [Hz]
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Figure 5.10: Fourier transform of the response ÿ at cube 12 (middle of the beam) under the

applied lateral harmonic excitations

each window j. The signal energy of the shaker output dF was computed following the

same procedure as well, eq. (5.4).

dF,j = ∆t
te/∆t
∑

l=ts/∆t

ü2
F (l) (5.4)

5. The signal energy values of the outputs were normalized with respect to the signal energy

of the shaker output. Since ∆t was constant, ∆t was omitted when the signal energy was

calculated - similar to eq. (3.5). At the end, the normalized minimum value d̄t,min/dF =

min(d̄t,1/dF,1, d̄t,2/d̄F,2, · · · d̄t,j/d̄F,j) was chosen.

6. The procedure was applied for all studied damage cases. Figure 5.11 and 5.12 show the
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Figure 5.11:
∑

d̄t,min,si/d̄F,si computed based on initial conditions and eq. (5.4) for all the

si = 1 · · · 11 sensors

variation of
∑

d̄t,min/d̄F considering different damage cases, excitation frequencies and

excitation location.

The results show that increasing damage θg from θg1 to θg3 reduces the signal energy significantly

if a harmonic excitation with fF = 20 Hz or fF = 30 Hz is applied in y or x directions. Applying

excitation in x direction with fF = 170 Hz helps to detect damage θg1 < θg < θg2.

Increasing damage θg from θg3 to θg5 increases the signal energy significantly if a harmonic

excitation with fF = 60 Hz or fF = 170 Hz is applied in y or x directions.
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Figure 5.12:
∑

d̄t,min,si/d̄F,si computed based on eq. (5.3) and eq. (5.4) for all the si = 1 · · · 11

sensors

5.1.5 Numerical study

Numerical model

A numerical model was developed using shell elements to evaluate the performance of the chosen

inspection method for damage detection. The bolted connections between every two cubes were

modeled by constraining the (x, y, z) translational degree of freedom of 8 nodes from the first

cube with their opposites from the second cube, figure 5.13 (a). The support conditions were

modeled by constraining the translational degrees of freedom of 8 nodes located at the lower

face of the cube at the column base.

The hinge was modeled using two opposite truncated pyramids from the same element type of

the cubes. The base of the first pyramid was connected to a plate attached to the cube at the

left side and the base of the second pyramid was connected to a plate attached to the cube at the
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right side. The translational degrees of freedom of the nodes at the small bases of the pyramids

were constrained, figure 5.13 (b). The thicknesses of the plate and the truncated pyramid shell

elements were adjusted to obtain the mass of the hinge measured in the laboratory. Using a

truncated pyramid to model the hinge can maintain the stiffness of the hinge due to friction

caused by the relative motion of the hinge elements. The stiffening elements were modeled using

the same element type and material properties of the cubes. The thickness of the cross-section

is 6 mm and the length of the angle leg is 65 mm, figure 5.13 (c).

bb

b

b b b

b

b

250 mm

120 mm

t=6 mm

59 mm

(a) cube cross section (b) Hinge model

65 mm

65 mm

t=6 mm

(c) Stiffening element model

Figure 5.13: Models of the elements that form the global shell element model of the steel frame

Figure 5.14: Numerical model of the studied frame using shell elements

The model was meshed to smaller shell elements with maximum size 10×10 mm. A linear elastic

material was used with Young’s modulus E = 2.070×105 MPa, density ρ = 7.830×10−9 t/mm3
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Figure 5.15: Rayleigh damping model included in the numerical model of the frame. Red

points represents the damping ratios of undamaged structure obtained from

measurements {ζE} and black line represents Rayleigh damping model, eq.(5.5)

and Poisson’s ratio ν = 0.3. Later the mass of the shaker (3.1036 kg) was added to a node

where the shaker was placed on the frame before performing a transient analysis. Rayleigh

damping model, which expresses damping as a linear combination of mass [M ] and stiffness

[K] matrices, eq. (5.5), with α = 0.459 and β = 3.364 × 10−6 was introduced in the model

based on the modal damping ratios obtained from the modal tests using the mean values from

damage case 1, figure 5.15.

[C] = α[M ] + β[K] (5.5)

It is important to mention some issues which were taken into account while developing the

model:

• Improving the model by introducing a Surface to Surface connection between the cubes,

hinges and stiffening elements increases the nonlinear behavior in the structural response

of the frame. Surface to Surface contact algorithm establishes contact when the surface

of one body penetrates the surface of another. It is used for bodies that have large

contact areas and the contact surfaces are known. More technical information is explained

in LSTC [2012]. In this case, the response of the structure depends on the distance

between the surfaces of the connected elements, the excitation properties, and damage

case. Moreover, if two surfaces hit each other, additional vibration noise was observed.

The amplitude of the noise depends on the excitation and the initial distance between
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the surfaces. It is possible to introduce numerical damping to reduce the influence of this

noise on the output signal. However, long computational time is required which can be a

challenge while performing a statistical study.

While conducting the modal test in the laboratory, the shaker did not produce large

forces amplitude. In this example, it was assumed that the nonlinear behavior in the

structural response of the frame was limited. Therefore, an investigation was done to

find out the most sensitive locations where if Surface to Surface model is used, significant

changes in frequencies and mode shapes are observed. The results indicate that the

connection between the surfaces of the cubes in the middle of the columns is important.

Therefore, Surface to Surface model was replaced by introducing more constraints between

the cubes in those areas. It was noticed that the third, sixth and twelfth modes, which

are significantly influenced by damage, are not influenced by considering the Surface to

Surface model.

• The response of the structure is sensitive to the model of the hinge. Different models of

the hinge were tested until reasonable frequencies and mode shapes were obtained, table

5.7, figure 5.16. It was noticed that the hinge model could change the influence of damage

on some mode shapes or frequencies. It is recommended to improve the model of the hinge

if better results are required. However, a trade-off between the model complexity and the

computational time should be considered if a statistical study is performed.

• It was noticed from the experimental test that releasing hinges increased the impact

between the cubes. As a result, large energy dissipation and significant damping influence

were observed. In this study, the reliability of the inspection method was evaluated

considering the damping as apart from damage, θg, as shown in eq. (5.6), where ks refers

to the stiffness of the stiffening elements, ms is the mass of the stiffening elements and

ζθg is the damping ratio because of removing the stiffening elements.

θg = f(ks,ms, ζθg) (5.6)

The frequencies and the mode shapes, calculated using the developed numerical model, are

presented in table 5.7 and figure 5.16. It was mentioned before that, the order of the first and

the second mode shapes are switched if the fourth and the fifth damage cases were introduced

in the experimental model in the laboratory. In this numerical study, this phenomenon was

observed only if the fifth damage case was modeled.

To check the similarity between the mode shapes of the studied structure obtained from tests

[φE,ri] and the numerical model [φS,rj] the Modal Assurance Criterion (MAC) was calculated

as follows:



Steel frame structure 118

Table 5.7: Natural frequencies of the numerical model fn,S [Hz] of the frame for studied damage

cases and relative error between fn,E and fn,S

Case 1 Case 2 Case 3 Case 4 Case 5

fn,S
|fn,E − fn,S|

fn,E
fn,S

|fn,E − fn,S|
fn,E

fn,S
|fn,E − fn,S|

fn,E
fn,S

|fn,E − fn,S|
fn,E

fn,S
|fn,E − fn,S|

fn,E

fn,1 8.97 10% 9.08 11% 9.18 12% 9.29 24% 9.13 42%

fn,2 10.70 6% 10.24 8% 9.99 13% 9.51 14% 9.41 12%

fn,3 18.31 1% 17.66 4% 16.54 7% 15.37 7% 14.27 24%

fn,4 50.86 4% 50.96 3% 51.10 5% 51.22 9% 51.28 15%

fn,5 63.85 2% 63.65 2% 63.50 1% 63.37 6% 63.30 9%

fn,6 81.73 3% 76.60 1% 73.84 2% 72.66 12% 70.73 17%

fn,7 85.03 1% 81.97 2% 80.36 2% 78.89 0% 78.97 5%

fn,8 85.84 1% 86.09 1% 86.36 2% 82.37 0% 79.23 0%

fn,9 99.33 5% 99.41 3% 99.39 1% 99.26 0% 99.34 2%

fn,10 104.27 6% 104.74 3% 105.23 0% 105.73 5% 106.23 6%

fn,11 134.61 3% 131.89 3% 131.90 4% 128.86 5% 128.85 7%

fn,12 157.94 5% 148.37 2% 132.41 3% 132.31 3% 129.28 5%

MAC(φE,ri, φS,rj) =
([φE,ri]

T [φS,rj])
2

([φE,ri]T [φE,ri])([φS,rj]T [φS,rj])
(5.7)

where ri = 1 · · · 12 and rj = 1 · · · 12 refers to the mode order. The results are presented in

figure5.17 and table 5.8. The results show that the first 5 mode shapes are highly related. Mode

shapes 7 to 12 show low MAC values. Improving the results may require using more sensors to

obtain more information about the high order modes.

The structural response of the studied example was computed under harmonic excitation similar

to what was recorded from the shaker. Figures 5.18 and 5.19 show examples of the computed

acceleration in one of the nodes of cube 12. The structural response was calculated for each

damage case under the same excitation. Therefore, it is possible to compare the signal energy

d with and without normalizing it to the signal energy of the input excitation dF , figures 5.20

and 5.21. The same procedure explained in Sec. 5.1.4 was applied to calculate the signal energy

of the structural response computed using the developed numerical model.

To compare the similarity between the simulated üS and measured üE responses of the studied

example, the correlation coefficient introduced in eq. (3.18) was calculated for each sensor and

damage cases as follows:

1. A time window which has the same duration of the simulated signal Ts was moved along

the measured response between j = 1 to j = (T −Ts) ∗ 512, where 512 represents the rate

of measurement points per second, [1/s].
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8 (i) Mode 9

(j) Mode 10 (k) Mode 11 (l) Mode 12

Figure 5.16: Mode shapes from 1 to 12: case 1
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Table 5.8: Modal Assurance Criterion values (MAC) MAC(φE,ri, φS,rj)

Case 1 Case 2 Case 3 Case 4 Case 5

MAC(φE,1, φS,1) 0.98 0.95 0.90 0.36 0.97

MAC(φE,2, φS,2) 0.98 0.90 0.89 0.35 0.96

MAC(φE,3, φS,3) 0.99 0.94 0.98 0.88 0.99

MAC(φE,4, φS,4) 0.95 0.95 0.95 0.94 0.87

MAC(φE,5, φS,5) 0.89 0.88 0.79 0.84 0.54

MAC(φE,6, φS,6) 0.19 0.33 0.36 0.55 0.42

MAC(φE,7, φS,7) 0.11 0.36 0.39 0.13 0.40

MAC(φE,8, φS,8) 0.01 0.29 0.39 0.36 0.62

MAC(φE,9, φS,9) 0.12 0.10 0.12 0.13 0.11

MAC(φE,10, φS,10) 0.07 0.46 0.61 0.68 0.24

MAC(φE,11, φS,11) 0.58 0.00 0.01 0.00 0.01

MAC(φE,12, φS,12) 0.83 0.16 0.91 0.61 0.24

2. For each window the correlation was calculated ρ(üE,j, üS)

3. The maximum correlation coefficient was taken: ρ(üE, üS) = max(ρ(üE,j, üS)) where

j = 1, 2, 3, · · · (T − Ts) ∗ 512

The results are presented in figures 5.22 to 5.25. The results show that by increasing the

frequency of the excitation, the correlation between üE and üS becomes higher which indicates

larger agreement between the measured and computed responses more than if the low frequency

of the excitation was used. In figure 5.26 the comparison between üE and üS was presented

by comparing both measured and simulated responses that show the largest correlation. Since

the amplitude of the input force was not measured during performing the tests, the amplitude

of the responses were normalized to 1 as follows:
ü(t)

max(üt=0, · · · , üt=T )
. The results show that

for fF = 20 and fF = 30 [Hz] excitations the measured forced response of the structure was

poorly observed compared to the computed forced response which explains the small correlation

coefficient values. This indicates that larger force amplitude should be used for the tests. For

fF = 60 and fF = 170 [Hz] the measured and computed forced responses were obtained, and

they are highly correlated.

For measuring the agreement between the developed numerical model and the experimental

model taking into account the studied damage model and the applied excitations, eq (3.3) was

applied to calculate QV . The results are presented in table 5.9. The positive values of QV which

was marked in red indicate an agreement between the response of the physical model and the

numerical model considering the studied damage model. If QV ≈ 1, it means that the d ∝ d̄.
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Figure 5.17: Modal Assurance Criterion values (MAC) MAC(φE,ri, φS,rj). ri = 1 · · · 12 and

rj = 1 · · · 12 refers to the mode order

If QV ≈ 0, it means that there is a modeling error and/or the noise in the experimental results

is large: dγ >> d∗. In this case, inaccurate inspection method assessment should be expected.
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12 due to 30 Hz harmonic excitation applied in y

direction
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(d) The |FFT| of the response of the structure

computed in cube 12 due to 30 Hz harmonic

excitation applied in y direction

Figure 5.18: The structural response and its |FFT| under the harmonic excitations applied in

y direction

The results in table 5.9 show that the quality of the numerical model depends on the excitation

properties and sensor location, QV = f(F, ü(x, y, z)). High QV values, which indicate better

agreement between both studied models, are obtained if an excitation with fF = 60 Hz is

applied.

Damage model

The assumed damping ratio increment depends on many factors. Some of these factors could

be: the relative motion between the surfaces of the cubes Ac, the relative motion between the

elements of the hinge, Ah, the relative motion between the surfaces of the hinge plates and the
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direction
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(d) The |FFT| of the response of the structure

computed in cube 12 due to 30 Hz harmonic

excitation applied in x direction

Figure 5.19: The structural response and its |FFT| under the harmonic excitations applied in

x direction

stiffening elements As, the stiffness of the stiffening elements ks, the pre-stress force in each

bolt Fb, the type of the excitation F and its amplitude Fa, the frequency of the excitation ω

and the level of the ambient vibration üa, eq. (5.8).

ζθg = f(Ac, Ah, As, ks, Fb, F, Fa, ω, üa) (5.8)

Including all the mentioned factors in the developed numerical model to investigate the damping

due to damage requires effort and unobtainable time. Therefore, empirical damping models have

been developed based on the experimental results. The developed damping models consider
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Figure 5.20:
∑

dt,si computed based on eq. (5.3) for all sensors si = 1, 2, · · · , 11

the effect of damage size on damping. The empirical damping models were used to modify the

signal energy d obtained from the response of the numerical model, considering the studied

damage model. After applying those empirical models, the value of d matches the value of d̄

which obtained from the response of the physical model considering equivalent damage size.

The value Cζ,i,j, eq. (5.9), refers to the ratio of d̄ to d for each sensor position j = 1, 2, · · · , 11 if

damage case i was observed. Cζ,i,j was used to consider the effect of damage θgi ≤ θg ≤ θgi+1 on

the damping ζθg . The change in damping because of damage can be observed in the dynamic

response of the structure at each sensor position j.

In this example, four different interpolation models were used to obtain the value Cζ,i,j for

θg1 ≤ θgi ≤ θg2, figure 5.27. The first model assumes that there was no influence on damping

due to damage increment (figure 5.27, bold black), eq. (5.10). The second model assumes that

damping was changing linearly if damage increases from case 1 to case 2 (figure 5.27, blue),

eq. (5.11), eq. (5.12). The third and the fourth models represent nonlinear changes in damping

due to damage (Parabolic models), eq. (5.13), eq. (5.14). The third model indicates that
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Figure 5.21:
∑

dt,si computed based on eq. (5.3) for all sensors si = 1, 2, · · · , 11

damping change faster than what other models indicate if damage increase(figure 5.27, green),

eq. (5.15). The fast change of damping was introduced by giving large weighting factor for

Cζ,2,j, in this example the weighting factor is 5, which means that damping Cζ,∆,j, corresponded

to damage size θg1,2 : θg1 ≤ θg1,2 ≤ θg2, converges fast to the value Cζ,2,j. Damping change happens

slowly by applying the fourth model (figure 5.27, red), eq. (5.16). The slow change of damping

was introduced by giving large weighting factor for Cζ,1,j, in this example the weighting factor

is 5, which indicates that damping Cζ,∆,j, corresponded to damage size θg1,2 : θg1 ≤ θg1,2 ≤ θg2,

converges slow to the value Cζ,2,j.

dmi,j(θ
g) is the computed structural response of the frame using the developed numerical model

at sensor position j considering damping model mi : mi ∈ [1, 2, 3, 4] and damage θg. Damage

θg was simulated by reducing the stiffness ks and the mass ms of the stiffening elements by

reducing their thickness hs of the stiffening elements corresponded to the elements that were

removed from the physical model for each damage case. if hs ≈ 0, the stiffening elements were

omitted from the numerical model.
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(d) Structural response ¨y4,E and ¨y4,S under 170 Hz

excitation applied in y direction, ρ(ÿ4,E , ÿ4,S) > 0.85

Figure 5.26: Comparison between the simulated and measured structural response under

different excitations after normalizing the amplitude to 1
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Table 5.9: Quality of the numerical model compared to the physical model for different DOE

given that d is the signal energy. Red values indicate an agreement between the

response of the physical model and the numerical model considering the studied

damage model

QV (d, d̄)

Sensor number and

measured direction

20 Hz y 20 Hz x 30 Hz y 30 Hz x 60 Hz y 60 Hz x 170 Hz y 170 Hz x

x1 0.00 0.15 0.00 0.70 0.76 0.80 0.00 0.00

x2 0.11 0.09 0.00 0.89 0.77 0.84 0.00 0.00

x3 0.36 0.00 0.00 0.60 0.65 0.92 0.00 0.00

x4 0.00 0.76 0.00 0.18 0.71 0.82 0.00 0.00

x5 0.00 0.00 0.00 0.00 0.46 0.84 0.00 0.27

x6 0.00 0.25 0.00 0.00 0.30 0.47 0.00 0.61

x7 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00

x8 0.00 0.00 0.81 0.00 0.64 0.48 0.00 0.00

x9 0.32 0.84 0.00 0.57 0.66 0.55 0.00 0.00

x10 0.43 0.00 0.00 0.16 0.76 0.38 0.00 0.00

x11 0.04 0.18 0.00 0.16 0.78 0.67 0.00 0.00

y1 0.62 0.00 0.00 0.00 0.11 0.49 0.00 0.00

y2 0.00 0.06 0.00 0.00 0.11 0.50 0.00 0.00

y3 0.17 0.00 0.00 0.00 0.59 0.46 0.00 0.00

y4 0.00 0.00 0.00 0.00 0.76 0.75 0.00 0.00

y5 0.94 0.00 0.79 0.00 0.89 0.09 0.00 0.25

y6 0.77 0.00 0.96 0.00 0.74 0.56 0.00 0.00

y7 0.17 0.00 0.00 0.30 0.83 0.17 0.00 0.00

y8 0.03 0.00 0.00 0.10 0.72 0.95 0.95 0.13

y9 0.76 0.00 0.93 0.00 0.86 0.85 0.00 0.00

y10 0.52 0.00 0.03 0.40 0.88 0.91 0.00 0.00

y11 0.80 0.84 0.00 0.87 0.89 0.91 0.00 0.00

z1 0.01 0.32 0.02 0.00 0.72 0.77 0.00 0.00

z2 0.00 0.21 0.59 0.33 0.77 0.74 0.00 0.00

z3 0.02 0.35 0.48 0.02 0.77 0.72 0.00 0.19

z4 0.24 0.56 0.00 0.37 0.77 0.86 0.00 0.00

z5 0.00 0.00 0.00 0.19 0.74 0.71 0.00 0.00

z6 0.00 0.00 0.21 0.00 0.77 0.75 0.00 0.58

z7 0.00 0.00 0.46 0.18 0.76 0.71 0.00 0.00

z8 0.00 0.00 0.20 0.20 0.68 0.67 0.00 0.00

z9 0.00 0.22 0.00 0.00 0.72 0.86 0.00 0.37

z10 0.00 0.47 0.00 0.00 0.78 0.88 0.00 0.00

z11 0.20 0.08 0.65 0.00 0.76 0.90 0.00 0.00

QV 0.20 0.16 0.19 0.19 0.68 0.67 0.03 0.07
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Cζ,∆,j =
5 × Cζ,1,j + Cζ,2,j

6
(5.16)
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Figure 5.27: Empirical damping models illustrate the influence of damage on the damping of

the structural response of the studied frame

5.1.6 Design of Experiments

The cumulative signal energy d of the acceleration time histories [ü(t)] = [ẍ(t), ÿ(t), z̈(t)] were

used as an output structural response to detect damage. It was possible to measure the mass

of the cubes and the hinges of the studied frame. Therefore, the variation of the structural

response due to masses’ uncertainty was omitted.

In this example, the uncertainty in the elastic modulus of the cubes Ec, hinges Eh and thickness

of the stiffening elements hs were considered, table 5.10. The studied uncertainty was introduced

in the numerical model by assigning probabilistic models to the chosen parameters based on

the uniform distribution.

The minimum energy of noise signal dγ due to ambient vibration was assumed to be 0.3×dt,min

since the tests results show that the forced response is small compared to the response of the

structure under ambient vibration γF especially for low frequency excitations (20 and 30 Hz),

figure 5.10 . As a result, d̄ = dt,min−dγ. Uncertainty ǫ due to instrumentation, initial conditions

and sensor quality was considered as a normally distributed uncertainty with zero mean and

standard deviation σǫ = 0.1d̄, eq. (5.17). In this case, σǫ was assumed. However, larger value

can be chosen if more factors may influence the response.

ǫ ∼ N (0, σ2
ǫ ) (5.17)
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Table 5.10: Mean values {µ}, minimum and maximum values of the studied parameters {θ}
and their coefficients of variation COV

Ec MPa Eh MPa hs mm

µ 1.790 ×105 1.770 ×105 6

Max 2.2504 ×105 2.2253 ×105 8.6

Min 1.3296 ×105 1.3147 ×105 3.40

COV 0.15 0.15 0.25

Table 5.11: Chosen design of experiments models to detect the studied damage θg

Model fF Hz Setups direction of F

DOE1 20 1 y

DOE2 20 1 ∩ 2 ∩ 3 y

DOE3 30 1 ∩ 2 ∩ 3 y

DOE4 20 1 ∩ 2 ∩ 3 x

DOE5 30 1 ∩ 2 ∩ 3 x

DOE6 170 1 ∩ 2 ∩ 3 x

The reliability of the inspection method was evaluated assuming that the design of experimental

models in table 5.11, were chosen separately based on the experimental results.

A Latin hypercube sampling method was used to generate N = 100 samples to investigate

the variation of the response d due to the input parameters {θ} . The size of the sample was

chosen as a trade off between the computational time and quality of the Meta-models that were

developed in the next step to solve more samples. The structural response [ü(t)] = [ẍ(t), ÿ(t),

z̈(t)] for damage case 1 (θg = 0) under each excitation shown in table 5.11 was computed for

each sample. The cumulative signal energy values {d} of the acceleration time histories ü(t)

were computed based on eq. (5.3). For all samples, the initial conditions u(0) = u̇(0) = 0 and

a constant excitation amplitude were applied.

5.1.7 Sensitivity analysis

The sensitivity analysis method described in section 3.4 was used to obtain information about

the contribution of {θ} to the outputs {d}. Meta-models {d} were developed to perform

the sensitivity analysis. The data sets which include 100 samples calculated in the previous

subsection were used. The statistical properties of the residuals were examined to ensure that

they satisfy the requirements described in section 3.4.4. The Total-effect index sT values were

calculated using [d] for all chosen design of experiments models given in table 5.11. Figure 5.28
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shows the results of the applied sensitivity analysis. The Total-effect index sT values show that

the studied structural response is not sensitive to the elastic modulus of the hinge, Eh which

means false alarm due to Eh is not expected. Moreover, the results indicate that the response

is sensitive to Ec. The variation of the thickness hs influences the structural response recorded

in the z-direction (channels 21 to 33). Based on eq.(5.18), the quality of the DOE models can

be obtained, table 5.12. The results show that the variation of Ec can produce a false alarm.

Therefore, including the damage patterns is important to avoid false alarm.

QDOE =
sT (hs)

sT (Ec, Eh, hs)
(5.18)

5.1.8 Model updating

Meta-models {d̂} = f({θ̂}) were developed for model updating. In this example, all of the

inputs were considered to be important {θ̂} ≡ {θ}. The statistical properties of the prior

density functions of the input parameters are given in table 5.10. Applying the Bayesian

updating approach explained before in section 3.5, the posterior density functions p({θ}|{d̄})

of the parameters were computed for each DOE model, figures 5.29 – 5.34. The statistical

properties of the posterior density functions of the input parameters for each DOE model are

presented in tables 5.13.

To evaluate the quality of the measurements for each design of experiment model given in

table 5.11, the index QM given in eq. (3.47) was computed, table 5.14. The results show

that although the low design of experiments quality values QDOE < 30% were obtained, it was

possible to obtain QM > 70%. This can be explained by the small number of the considered

parameters Nθ = 3.

5.1.9 Assessment of the inspection method

The developed method in section 3.6.2 was applied. The damage size θgi ∈ [0–40%]×6 mm was

used to calculate the response di(θ
g
i ) with an interval ∆θg = 0.015% × 6 mm. The increment

of the damage size from θg1 to θg2 included the possible influence of damping due to damage

Table 5.12: The quality of the chosen design of experiments models to detect the studied

damage θg

DOE1 DOE2 DOE3 DOE4 DOE5 DOE6

QDOE 22 % 23 % 7 % 28 % 25 % 8 %
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Figure 5.28: Total-effect index sTi,j calculated for all chosen design of experiments models

given in table 5.11. Channel numbers from 1 to 11 are in x direction, 12 to 22

are in y direction and 23 to 33 are in z direction, table 5.6.
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Table 5.13: The statistical properties of the posterior density functions of the input parameters

DOE1 DOE2

Ec MPa Eh MPa hs mm Ec MPa Eh MPa hs mm

µ 177991.6 173334 6.8 178676.3 154054.6 6.5

σ 1125.2 13205.4 0.24 803.4 10429 0.15

DOE3 DOE4

Ec MPa Eh MPa hs mm Ec MPa Eh MPa hs mm

µ 180987.8 176324 6 180122.8 193526.7 5.8

σ 737 9930.5 0.24 824.3 5318.2 0.047

DOE5 DOE6

Ec MPa Eh MPa hs mm Ec MPa Eh MPa hs mm

µ 179778.31 180408.5 5.72 179817.71 179123.7 5.98

σ 594.7 4015.4 0.049 384.1 4048.93 0.10

Table 5.14: The quality of the chosen measurements to detect the studied damage θg

DOE1 DOE2 DOE3 DOE4 DOE5 DOE6

QM 76 % 82 % 81 % 91 % 93 % 92 %
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Figure 5.29: Posterior density functions of the updated input parameters using {d̄|DOE1}

presented in eq. (5.9), eq. (5.10), eq. (5.11) and eq. (5.13). In other words, damage was

introduced in the model GM by reducing hs as follows:

∀θg∆hi, θg∆hi+1 : θg∆hi+1 = θg∆hi + ∆θg ⇒ hs,∆hi+1 = hs,∆hi − 0.015 × 6 [mm] + ǫhs|d̄ (5.19)

where hs,∆hi refers to the thickness of the stiffening element after reducing it by hi × ∆θg,

hi = 1, 2, · · · . ǫhs|d̄ ∼ N (0, σ2
ǫhs|d̄

) refers to the remained uncertainty represented by the standard
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Figure 5.30: Posterior density functions of the updated input parameters using {d̄|DOE2}
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Figure 5.31: Posterior density functions of the updated input parameters using {d̄|DOE3}
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Figure 5.32: Posterior density functions of the updated input parameters using {d̄|DOE4}

deviation of the value of the hs after model updating, table 5.13. The model updating results

shown in figures 5.29 (c) – 5.34 (c) show that the posterior density functions p(hs|d̄) have a

distribution shape close to the normal distribution. σǫhs|d̄
values for each DOE model are given

in table 5.13. The computed response d(θg∆hi) was modified as shown in eq. (5.9) – (5.13) to

include the damping effect.

Based on eq. (3.63), if PFP=0.05 and for n=33 output (channels), N = 643. The number of

samples for each damage step ∆θg was increased until the value of POD(θgi ) converged. The
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Figure 5.33: Posterior density functions of the updated input parameters using {d̄|DOE5}

1.4 1.6 1.8 2 2.2

x 10
5

0

0.02

0.04

0.06

0.08

0.1

Ec

D
e
n

s
it

y

(a) p(Ec|d̄)

1.4 1.6 1.8 2 2.2

x 10
5

0

0.002

0.004

0.006

0.008

0.01

Eh

D
e
n

s
it

y

(b) p(Eh|d̄)

4 5 6 7 8
0

0.005

0.01

0.015

0.02

hs
D

e
n

s
it

y

(c) p(hs|d̄)

Figure 5.34: Posterior density functions of the updated input parameters using {d̄|DOE6}

investigation shows that N = 1000 samples for each damage step are sufficient to obtain the

convergence of the POD curves.

Damage patterns introduced in section 4.6.2 were considered when the POD was calculated.

The threshold dc,j values were chosen PFPi = POD(θg|θg = 0, dj) ≤ 0.05 for each response dj

in each direction x, y and z, j = 1, 2, · · · 11 is the number of the sensor. It means that if there

was no damage, only 5% of the indicator values dj(θ
g) exceeds dc,j and produce false alarm.

As a result, eq. (3.55) can be used to select the threshold value for each response that satisfy

the PFP condition. Based on eq. (3.59) and the chosen threshold values, the POD curves can

be computed for each DOE model, figure 5.35.

Table 5.15 shows the damage sizes θg that satisfy the condition given in eq. (5.2). The results

show that the chosen inspection method is reliable for detecting the studied damage. However,

the influence of the damping model due to damage on the minimum damage size that can not

be missed (POD(θg∆hi+1 ≥ θg∆hi) = 100%, POD(θg∆hi−1 < θg∆hi) < 100%) should be considered.

If increasing damage causes that damping changes rapidly as shown in eq. (5.15), damage can

be detected early as figure 5.35 (green line) shows. If increasing damage causes that damping

changes slowly as shown in eq. (5.16), damage can be detected late as figure 5.35 (red line)

shows.
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The inspection method was evaluated at θg = 0.09 mm by computing the index QD using

eq. (3.61). The results in table 5.16 show that the damping models due to damage have to be

considered if the reliability of the inspection method is investigated.

Table 5.15: θg|POD(θg = 95%, dmi,j(θ
g|ζθg)) in mm where, mi = 1, · · · , 4 is the damping

model

Damping Model DOE1 DOE2 DOE3 DOE4 DOE5 DOE6

d1,j(θ
g|ζθg) 0.36 0.27 0.45 0.09 0.09 0.09

d2,j(θ
g|ζθg) 0.09 0.09 0.09 0.18 0.18 0.09

d3,j(θ
g|ζθg) 0.09 0.09 0.09 0.09 0.09 0.09

d4,j(θ
g|ζθg) 1.86 1.71 1.62 - 1.71 1.62

Table 5.16: QD calculated considering θg = 0.09 mm

Damping Model DOE1 DOE2 DOE3 DOE4 DOE5 DOE6

d1,j(θ
g|ζθg) 5% 20% 5% 100% 96% 99%

d2,j(θ
g|ζθg) 100% 100% 100% 93% 88% 100%

d3,j(θ
g|ζθg) 100% 100% 100% 100% 100% 100 %

d4,j(θ
g|ζθg) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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(c) POD(θg) curves using DOE3
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(d) POD(θg) curves using DOE4
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Figure 5.35: Probability of damage detection of the studied damage type using different

designs of experiment and different damping models. The sensors of each DOE

are defined in the tables 5.1 and 5.11.
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5.1.10 Conclusion

In this example, the performance of a vibration-based inspection method to detect damage in

a single-span-one-story steel frame structure was tested. Different design of experiments were

considered. The following results can be pointed out:

• The reliability of the inspection method depends on the chosen design of experiments

including the excitation properties, the number of the sensors and the location of the

sensors.

• If an agreement is obtained between the structural response calculated using the developed

numerical model and the structural response measured using the physical model before

considering damage, it is not necessary that this agreement would remain after considering

damage. Therefore, the quality of the numerical model should be evaluated after

considering damage to ensure an accurate evaluation of the chosen inspection method.

• The reliability of the inspection method depends on the developed damage model.

• Increasing the complexity of the model by considering important phenomena to obtain

better results can be prevented if the appropriate design of the experiment, which brings

a structural response that is not sensitive to those complex phenomena, is used.
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5.2 Cantilever

5.2.1 Introduction

The performance of a vibration-based inspection method for damage detection is evaluated

considering two different numerical models. The studied example is a cantilever with an

extension that includes two rubber bands and two suspended weights. The influence of the

cable on the studied structural response of the cantilever is investigated.

The experimental models of the studied structure and damage, the test setups and the modal

parameters obtained from experiments are presented. The numerical models are used to perform

a statistical study and to evaluate the performance of the chosen inspection method through

the probability of damage detection curves.

5.2.2 Problem definition and test setup

In this example the studied structure is a cantilever, figure 5.36. The cantilever is 3 m high

measured from the top of its concrete foundation. The cross-section of the cantilever is a hollow

circle which has 110 mm outer diameter and 3.2 mm wall thickness, figure 5.37. Since this type

of systems is usually used as water pipes, the outer diameter of the last 66 mm of the upper

part of the pipe is 15 mm wider for a possible connection to other pipes. A 90 liter mortar

bucket filled with concrete was used as a foundation for the structure. The foundation has a

truncated cone shape with a 35 cm height and 60 cm diameter at the top. The foundation

was constructed to provide a fixed support condition for the cantilever. The cantilever was

made of Polyvinyl chloride (PVC). The material properties are provided by the manufacturer.

The density is ρ = 1.39 to 1.40 g/cm3, the Modulus of elasticity is E ≥ 3000 N/mm2 and the

Poisson ratio ν = 0.4.

The dynamic response of the studied structure was measured using five -3 axial- accelerometers.

The sampling frequency was chosen as ∆f= 4096 Hz. The accelerometers were fixed to the

pipe using steel rings and magnets, figure 5.36. They were placed at 1, 1.5, 2, 2.5 and 2.96 m

measuring from the top of the foundation. The system was excited using impulse forces which

were applied at 2.04 m measured from the top of the foundation. The impulse was created by

using a simple single degree of freedom system which contains a wooden mass fixed to the end

of a thin aluminum beam, figure 5.38. The wooden mass was shifted each time within a certain

distance and then released to hit the pipe where the force sensor was placed to measure the

input excitation. Such excitation system provided relatively controlled input force amplitudes

and frequency range, figure 5.40.

Since the cantilever is light, a large force amplitude can lead to large displacements causing

geometrically nonlinear behavior. The mass of the sensors especially at the top of the cantilever
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Figure 5.36: Studied PVC cantilever

can influence the response of the structure. In each modal test, the structure was excited

using at least 10 impulses. After applying an impulse, sufficient time was kept to let the

structural response to decay to the static state before applying the next impulse. As a result,

the interaction between the cantilever and the excitation system was prevented. Since the

surrounding environment conditions (temperature, humidity, etc.) of the laboratory were

constant during the test, their influence was omitted.

To investigate the influence of changing the support conditions on the structure, an extension

was developed and added to the original cantilever. Two rubber bands were fixed to the steel

ring which was used to place the sensor at the top. The rubber bands were passed through
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Figure 5.37: Test setup of the studied PVC cantilever of the dynamic modal test

guide rollers fixed to the ceiling. Two weights were suspended at the second ends of the bands

to generate pretension forces, figure 5.39. The distance between each weight to the cantilever

was adjusted to keep the total system symmetric as much as possible, figure 5.38. Each of

the adjustable weights has a maximum mass of 1.5 kg. The no damage case was considered if

both weights were at their maximum which provide tension forces at the end of the cantilever.

Damage was developed by reducing the masses on both sides equally. Four damage cases were

studied:

• Case 1: both masses 1.5 kg ⇐⇒ θg1 = 0 kg (no damage)

• Case 2: both masses 1.0 kg ⇐⇒ θg2 = 0.5 kg

• Case 3: both masses 0.5 kg ⇐⇒ θg3 = 1 kg

• Case 4: cables released ⇐⇒ θg4 = 1.5 kg (maximum damage)

At first, the test was performed without adding any weight to both ends of the bands. In the

second step, 0.5 kg was added to both ends of the bands, and then the test was performed

again. After that, the weight was increased to 1 kg and at the end to 1.5 kg. According to the

orientation of the accelerometers, the coordinate system was defined as follows: x: vertical, y:

horizontal perpendicular to the impulse excitation axis and z: horizontal in the same direction

of the excitation force.
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Accelerometer

Bottle of water

Force sensor

Cables of the accelerometer

A Single degree of freedom system
which was used to excite the tower

The wood ball was moved to the ruler

and then released to hit the force sensor

Figure 5.38: Introducing damage model in the studied PVC structure

The main goal was to obtain the minimum damage size that can not be missed:

Ho : ∀θg : θg ∈ [θg1, θ
g
4] ⇒ POD(θg + ∆θg) = 1, POD(θg − ∆θg) < 1, PFP ≤ 0.01

H1 : The inspection method is not reliable
(5.20)

5.2.3 Test results

A modal test was conducted using impulse excitations which have similar properties due to the

excitation procedure introduced in the previous section, figure 5.38. The goal was to obtain the

variation of the dynamic response of the cantilever due to the introduced damage. Figure 5.42
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Figure 5.39: A sketch of damage modeling in the physical model

shows an example of the structural response at the top of the cantilever for case 1 under an

impulse excitation presented in figure 5.41. Table 5.17 shows that the influence of the chosen

damage on the extracted natural frequencies {fn,E} and damping ratios {ζE} is not significant.

Figures 5.44, 5.45 and 5.46 present the first 6 mode shapes extracted from measurements and

scaled to unit modal displacement for all damage cases under the applied excitations. The mode

shapes were obtained by applying the SSI method following the similar procedure explained

in appendix C. The results show that the studied damage type influences the first two mode

shapes significantly compared to the higher order modes. It was observed that when the weights

at both sides reduced from the first damage case to the third damage case, the inclination of

the first mode shape to z-axis decreases and similarly the inclination of the second mode shape

to y-axis decreases. When the weights were completely removed (fourth damage case), the

inclinations of the first two mode shapes to the axis y and z were between the second and the

third damage cases. The MAC values between damage case 1 and other damage cases, figure

5.47, do not present changes due to damage. It is important to mention that the band reached

its maximum elongation for damage case 1, 2 and 3.

There are many reasons that can lead to the observed results related to the first two mode

shapes:

• Table 5.17 shows that the frequencies of modes 1 and 2 which have similar shapes are
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(b) θg = 5 kg
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(c) θg = 10 kg
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(d) θg = 15 kg

Figure 5.40: |FFT| of input excitations in all studied damage cases

Table 5.17: Natural frequencies and damping ratios extracted from measurements for the

studied damage cases

1 2 3 4 5 6

Case 1
f Hz 2,97 3.23 18.41 20.64 51.57 52.07

ζ% 1.34 2.57 2.43 2.07 1.54 1.67

Case 2
f Hz 2.93 3.18 18.23 20.72 51.5 52.10

ζ% 1.45 2.71 2.10 2.83 1.79 1.98

Case 3
f Hz 2.90 3.40 18.42 20.81 51.38 52.09

ζ% 1.50 3.77 2.36 2.47 1.75 2.16

Case 4
f Hz 2.83 3.11 18.44 20.72 51.50 52.15

ζ% 1.40 3.99 2.44 2.21 1.79 2.08
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Figure 5.41: Time histories and |FFT| of an input excitation
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Figure 5.42: Structural response at the top of the cantilever under the excitation in figure

5.41, case 1

different. This difference indicates that the studied cantilever is asymmetric even if both

weights are not added. Therefore, it is possible that if the weights were added, the

structure could be shifted in the y-direction to one side more than the other side. Since

the excitation system was not readjusted to consider this shifting, the excitation force

may not be entirely applied in z-direction but also in the y-direction, figure 5.43.

• Another effect is the different friction factors of both rollers. This difference can lead to

different forces in both bands. As a result, the asymmetry of the system increases by

increasing the weights at both sides.



Cantilever 147

• The uncertainty in the angles between the bands’ axes and the cantilever vertical axis

(x-direction) can lead to an asymmetrical system. The asymmetry of the system increases

by increasing the weights at both sides.

The signal energy d̄t of the recorded acceleration signals was calculated for each applied impulse

and for each damage case in y and z direction based on eq. (3.5). In the next step, d̄t was

normalized to the signal energy of the impulse force dF which was calculated following the

same procedure for calculating d̄t, figure 5.48 and 5.49. The results show that although the

excitation force was applied in z direction, the values of the signal energy in y direction d̄t(y) in

many cases are more than 70% of the signal energy values in z direction d̄t(z), d̄t(y) ≥ 0.7d̄t(z).

The asymmetry of the system explained before can be the reason of obtaining these results.

In order to compare the values of signal energy for all damage cases, two methods were applied.

The first is comparing the mean values, eq. (5.21), figure 5.50 and the second is to select similar

impulse excitations, figure 5.51, for all damage cases and then to compare the signal energies

caused by those excitations, figure 5.52.

If i = 1, 2, 3, 4 is the studied damage case and j = 1, 2, · · · , n is the number of the applied

excitations and n is the total number of excitations applied in damage case i, the mean value

of the normalized signal energy d̄t,i for damage case i can be calculated as follows:

∀i, j : d̄t,i =

n
∑

j=1
d̄t,i,j

n
(5.21)

Both methods show similar results for damage cases 1, 2 and 3. The difference was observed

for damage case 4, figure 5.50. Moreover, the second method, where the impulses are similar,

shows that the variation between the energy values due to the studied damage cases is more

significant than the variation of the mean values of the energy due to the same studied damage

cases. Since decreasing the weights increases the energy of the recorded signals, these bands

and weight combination system may behave as dampers as well.

y

z

impulse

case 1case 2

Figure 5.43: The structure is shifted in y direction due to the added weights and the

asymmetry
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Figure 5.44: Mode shapes 1 and 2 scaled to unit modal displacement extracted from

experimental data , θg1:black, θg2:red, θg3:green, θg4:blue
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Figure 5.45: Mode shapes 3 and 4 scaled to unit modal displacement extracted from

experimental data, θg1:black, θg2:red, θg3:green, θg4:blue
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Figure 5.46: Mode shapes 5 and 6 scaled to unit modal displacement extracted from

experimental data, θg1:black, θg2:red, θg3:green, θg4:blue
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Figure 5.47: MAC value computed between damage case 1 and other damage cases
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Figure 5.48: The statistical results of d̄t(y) normalized to dF for all studied damage cases
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Figure 5.49: The statistical results of d̄t(z) normalized to dF for all studied damage cases
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Figure 5.50: The mean value of d̄t/dF
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Figure 5.51: Chosen excitations and their |FFT| from conducted experiments in order to

calculate the response of the studied models for each damage case
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Figure 5.52: d̄t/dF under similar impulses
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5.2.4 Numerical model

Two finite element models were developed to investigate the influence of the cables on the

studied structure, figure 5.53. A shell element type was used to model the cantilever. The

shell elements were meshed to smaller elements with a maximum size of 30 mm. A Mass

point element type was used to consider the influence of the masses of the sensors. The mass

of the sensor including the fixation ring was obtained by measuring its weight, Ms = 210 g.

The masses of the sensors were placed at {x} = {1, 1.5, 2, 2.5, 2.96} m measuring from the

foundation x = 0 m. All six degrees of freedom of the nodes located at plan x = 0 m were fixed

to represent the clamped support condition. The linear isotropic material was assigned to the

cantilever. The natural frequencies of the studied system presented in table 5.17 indicate that

the cantilever is asymmetric. To include the structure imperfection, the model was divided

using a XZ plane where y = 0 into two equal parts. Different elastic modulus values were

assigned to each part. The elastic modulus EP,1 was assigned to the elements which are located

at the first half: y > 0 −→ EP,1 = 3000 N/mm2 and EP,2 was assigned to the elements which

are located at the second half y ≤ 0 −→ EP,2 = 4000 N/mm2. The Poisson’s ratio νP and the

density ρP are considered as follows: {νP , ρP} = { 0.4, 1.39 t/m3}.

In the first numerical model GM,1, figure 5.53 (a), a cable element type was used to model

the rubber cables. The cable element allows only to carry an axial tension force. The angle

between the horizontal and the local axis of the cable is 50◦, figure 5.37. A cable material type,

which includes only the material properties in axial direction of the cable, was assigned to the

cable elements. As it was mentioned in the previous section, the band reached its maximum

elongation for damage cases 1, 2 and 3. This means that the stiffness of the band depends

on the added weights which cause axial forces Fw in the cables. The relationship between the

force and the stiffness after reaching the third damage case Fw = 5 N (both masses are 0.5 kg)

is unknown. If the probability of damage detection doesn’t reach 100% before damage case 3

is reached, then assessing the reliability of the inspection method for damage levels less than

Fw = 5 N depends on how the rubber band behaves when the axial force decreases from 5 N to

0 N. For a precise evaluation, additional experiments help to discover more information about

the behavior of the rubber band in this case. In this work, a simple linear model was chosen to

represent the behavior of the rubber band in case of Fw < 5 N. Choosing other models is also

possible, and this influences the probability of detection if large-size damage is late detected.

In this case, the inspection method is not reliable by default. The difference ∆L = L0 − L1

between the initial length of the cable L0 ≈ 200 mm before applying the load and the length

of the cable L1 after applying the load Fw = 5 N was measured. The test shows that L1 ≈ 400

mm. In order to calculate the elastic modulus of the bands, their stiffness Kc was estimated

assuming the follows:
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Kc =



























Fw
∆L

if Fw < 5 N

Fw
200

= 0.005Fw if 5 ≤ Fw ≤ 15 N

(5.22)

In order to estimate EC it was assumed that if Fw ≥ 5 N → AC = πr2
c = π0.322 = 0.32 mm2,

where AC is the area of the cross-section of the cable and rc is the radius of the cross-section

which was assumed to be a circle. As a result, EC is calculated as follows:

(a) Numerical model of the studied cantilever GM,1

including cables

(b) Numerical model of the studied cantilever GM,2

without cables

Figure 5.53: Numerical models considered for evaluating the performance of the studied

inspection method
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EC =
KcL0

AC
=

0.005 × Fw × 200

0.32
≈ [15.6–46.8]N/mm2 (5.23)

The uncertainty in EC due to the initial length L0, the area of the cables cross-section, ∆AC ,

before and after applying the load and the hardening region of the rubber was considered in the

statistical investigation in the next steps. The density ρC was considered as 1.1 t/m3. Local

coordinate systems were defined to provide suitable boundary conditions for the cables. The

xc axis of the local coordinate system is associated with the local central axis of the cable. The

translational degrees of freedom in both yc and zc directions of the top node of the cables were

fixed in the local coordinate systems. The cable forces Fw = Vw×ρw×g produced by the water

volume Vw in each bottle were applied at the top node of the cables in xc direction of the local

coordinate systems. The axial cable forces Fw were directed to produce tension forces in the

cables. The density of the water is considered as ρw = 1 t/m3 and the gravitational acceleration

is g= 9.81 m/s2. In this case the damage model θg is a function of Kc and Fw: θg = f(Kc, Fw),

where 0 ≤ Fw ≤ 15 N. Damage was increased by reducing Kc and Fw.

In the second numerical model GM,2, figure 5.53 (b), the cables were replaced by 2 viscous

dampers in each direction. The dampers were attached to the cantilever at the same nodes

where the cables were attached to the cantilever in the first model. In this case the damage

model θg is a function of Fw, the damping force in y direction Fζ,w,y and the damping force

in z direction Fζ,w,z: θ
g = f(Fw, Fζ,w,y, Fζ,w,z). Fw was decoupled to two components: Fw,x =

Fw sin 50◦ and Fw,y = Fw cos 50◦, see figure 5.37. Fw components were applied at the same nodes

where the cables were attached to the cantilever in the first model. Damage was increased by

reducing Fw, Fζ,w,y and Fζ,w,z.

In order to include the influence of the force Fw on the dynamic response of the structure, an

initial transient analysis was performed after applying Fw. In order to avoid the vibration of

the structure during the performed analysis, large damping value was assigned to the model

by increasing α in the Rayleigh damping model as shown inf figure 5.54. In the next step, the

time history of the impulse excitation Fz for damage case 1 (no damage: θg1 = 0 kg), which

was recorded during the laboratory modal test and shown in figure 5.51, was applied after

removing the noisy part. The noise was removed from the excitation time history by choosing

a threshold Fc where F (t) = 0 if F (t) < Fc. In this example Fc = 0.1 × FZ,max. At each time

step ∆t = 1/4096 s, the associated force Fz(t) was applied at the node located at x = 2.05 m

in z direction: (x, y, z) = (2.05, 0,−r). Rayleigh damping model, eq. (5.5), with α = 0.45 and

β = 9.78e− 05 was introduced in both models, figure 5.55, based on the modal damping ratios

obtained from the modal tests case 1. The acceleration time histories were calculated for the

nodes where sensors were placed at the structure in the laboratory, figure 5.56 and 5.57.

The asymmetry explained in the previous section was considered, besides considering two elastic

modulus values, by applying a horizontal impulse force Fy in the y-direction at the node located
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at (x, y, z) = (2.05, r, 0) in both models. The additional impulse force Fy has the same time

history shape of the original impulse Fz but its amplitude was scaled with respect to the

amplitude of Fz. Moreover, in order to include the possible effect of different friction factors

of the roller, different axial forces were applied to the cables: for y > 0 ⇒ Fw = Fw,1, for

y < 0 ⇒ Fw = Fw,2. Similarly for the model GM,2, different values was assigned to the damping

forces Fζ,w,z and Fζ,w,y.

The modal parameters were estimated from the calculated response by applying the SSI

method following the similar procedure presented in appendix C. The estimated frequencies

and damping ratios are shown in tables 5.18 and 5.19. The results show that the asymmetry

model introduced using different elastic modulus values, different cable forces and adding Fy

helps to separate the frequencies of the close modes similar to what was measured in the

laboratory. However, the mode shapes in figures 5.58 – 5.63 show smaller inclinations to y and

z axes compared to the experimental results. The damping forces due to the cables can be

calculated as follows:

Fζ,w = −Cdu̇ (5.24)

where Cd is the damping constant and u̇ refers to the velocity in y and z directions. The initial

values of Cd,z and Cd,y can be estimated roughly assuming that the critical damping constant

Cc of the cantilever was not affected by the cables. The critical damping of the structure can

be calculated as follows:

Cc = 2MpωE (5.25)

where Mp refers to the kinetically equivalent mass which can be obtained as the modal mass

normalizing the mode shape φr such that the modal displacement at the considered degree
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Figure 5.54: The contribution of the mass of the structure in the Rayleigh damping model

during performing transient analysis
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Figure 5.55: Rayleigh damping model included in the cantilever numerical models

of freedom = 1, eq.5.26. For the first bending mode of a cantilever with continuous mass

and stiffness distribution the kinetically equivalent mass is 0.25 of the total mass. The total

mass of the structure is m = A × h × ρ = 4.51 kg where A is the area of the cross-section

A = π(1102 − 103.62)/4 = 1073.67 mm2. The instrumentation consists of 5 accelerometers and

one force sensor besides the steel rings that hold the sensors on the structure. Ignoring the

mass of the cables, Mp,1 = 0.25 × (4.51 × 10−3 + 6 × 210 × 10−6) = 1.44 × 10−3 t or 1.44 kg.

Mp,r = {φr}T [M ]{φr} (5.26)

In this example, the effective modal mass in case of the first mode in each direction (y and z)

including the instrumentation will be considered when estimating Cc. The contribution of higher

modes will be considered later by performing model updating and uncertainty quantification.

ωE,1 is the measured natural frequency of the mode 1 z-direction, ωE,1 = 2 × π × 2.9 = 18.22.

The critical damping is Cc = 2 × 1.44 × 18.22 ≈ 52.5 N×s/m. For the second mode y-direction

ωE,2 = 2 × π × 3.1 = 19.4 rad/s. The critical damping is Cc = 2 × 1.44 × 19.4 ≈ 55.8 N×s/m.

For simplification purposes Cc will be considered 55 N×s/m for the both modes. The damping

force without considering the cable is Fζ = −Cu̇ where C = ζ × Cr.

The total damping force including the cables effect Fc = Fζ,w+Fζ = −Cdu̇−Cu̇ = −(Cd+C)u̇.

Assuming that the estimated damping ratio ζE from the measurement includes the effect of the

interaction between the cables and the structure, then it is possible to write that (Cd + C) =

ζE × Cr. As a result:
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Cd = ζE × Cr − C = (ζE − ζ) × Cr (5.27)

Since the Rayleigh damping model in figure 5.55 gives low damping value for the second mode,

it was assumed that ζ = 0.1 × ζE ≈ 0.1 × 0.03 = 0.003, Cd ≈ 0.9 × 0.03 × 55 = 1.485 N×s/m

≈ 0.0015. N×s/mm. In order to include the uncertainty when estimating Mp and ζE, the range

Cd = [0.0001–0.01] N×s/mm was considered in the next steps.
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Figure 5.56: Simulated dynamic structural response at the top of the cantilever due to the

excitation in figure 5.51, case 1, using the numerical model GM,1
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Figure 5.57: Simulated dynamic structural response at the top of the cantilever due to the

excitation in figure 5.51, case 1, using the numerical model GM,2
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Table 5.18: Natural frequencies and damping ratios obtained using the numerical model GM,1

by analyzing numerical response using the SSI method

1 2 3 4 5 6

case 1
f Hz 3.01 3.05 18.50 18.81 50.68 51.06

ζ [%] 3.18 3.31 0.55 0.51 0.20 0.22

case 2
f Hz 2.99 3.08 18.49 18.80 50.68 51.05

ζ [%] 3.25 3.70 0.55 0.52 0.20 0.22

case 3
f Hz 2.97 3.04 18.47 18.79 50.67 51.04

ζ [%] 3.23 3.18 0.55 0.52 0.20 0.22

case 4
f Hz 2.96 3.01 18.46 18.78 50.66 51.04

ζ [%] 3.28 3.33 0.55 0.51 0.20 0.22

Table 5.19: Natural frequencies and damping ratios obtained using the numerical model GM,2

by analyzing numerical response using the SSI method

1 2 3 4 5 6

case 1
f Hz 2.92 3.02 18.51 18.80 50.68 51.05

ζ [%] 14.41 9.69 1.70 1.43 0.44 0.45

case 2
f Hz 2.97 3.01 18.50 18.79 50.68 51.05

ζ [%] 7.45 6.27 1.09 0.97 0.32 0.34

case 3
f Hz 2.96 3.01 18.48 18.78 50.67 51.04

ζ [%] 4.85 4.66 0.82 0.75 0.26 0.28

case 4
f Hz 2.96 3.01 18.46 18.78 50.66 51.04

ζ [%] 3.28 3.33 0.55 0.51 0.20 0.22

In order to estimate the quality of the developed numerical models GM,1 and GM,2 compared

to the experimental model GE the energy of the acceleration signals was calculated for all

damage cases given the initial input parameters for the model GM,1 in table 5.20 and for the

model GM,2 in table 5.21. The results in figures 5.64 show that the influence of the stiffness of

the cables on the structural response is small compared to the damping effect in figure 5.65.

However, both models show agreement with the experimental results in case of the first three

damage cases. The reason for the disagreement related to damage case 4 may be because of

the inaccurate or insufficient asymmetry model. The QV values in tables 5.22 and 5.23 were

calculated considering the first three damage cases. The results show that considering the

damping effect of the cables provides a better numerical model in case of damage detection.
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Figure 5.58: Mode shapes 1 and 2 and scaled to unit modal displacement obtained using the

numerical model GM,1 by analyzing numerical response using the SSI method.

θg1: black, θg2: red, θg3: green, θg4: blue



Cantilever 163

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

z 

y

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

z 

x

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

y 

x

(a) mode shape 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

z 

y

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

z 

x

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

y 

x

(b) mode shape 4

Figure 5.59: Mode shapes 3 and 4 and scaled to unit modal displacement obtained using the

numerical model GM,1 by analyzing numerical response using the SSI method.

θg1: black, θg2: red, θg3: green, θg4: blue
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Figure 5.60: Mode shapes 5 and 6 and scaled to unit modal displacement obtained using the

numerical model GM,1 by analyzing numerical response using the SSI method.

θg1: black, θg2: red, θg3: green, θg4: blue
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Figure 5.61: Mode shapes 1 and 2 and scaled to unit modal displacement obtained using the

numerical model GM,2 by analyzing numerical response using the SSI method.

θg1: black, θg2: red, θg3: green, θg4: blue
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Figure 5.62: Mode shapes 3 and 4 and scaled to unit modal displacement obtained using the

numerical model GM,2 by analyzing numerical response using the SSI method.

θg1: black, θg2: red, θg3: green, θg4: blue
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Figure 5.63: Mode shapes 5 and 6 and scaled to unit modal displacement obtained using the

numerical model GM,2 by analyzing numerical response using the SSI method.

θg1: black, θg2: red, θg3: green, θg4: blue
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Table 5.20: The input parameters of GM,1 used to calculate QV

θg [kg] Fw,1 [N] Fw,2 [N] Ep,1 [N/mm2] Ep,2 [N/mm2] Fy/Fz Ec [N/mm2]

0 15 15 3000 4000 0.5 45

0.5 10 10 3000 4000 0.5 30

1 5 5 3000 4000 0.5 15

1.5 0 0 3000 4000 0.5 0

Table 5.21: The input parameters of GM,2 used to calculate QV

θg kg Fw,1 [N] Fw,2 [N] Ep,1 [N/mm2] Ep,2 [N/mm2] Fy/Fz Cd,z [N×s/mm] Cd,y [N×s/mm]

0 15 15 3000 4000 0.5 0.01 0.01

0.5 10 10 3000 4000 0.5 0.008 0.008

1 5 5 3000 4000 0.5 0.002 0.002

1.5 0 0 3000 4000 0.5 0 0

Table 5.22: The quality of the numerical model GM,1 compared to the experimental model GE

x [m] QV,i(y) QV,i(z)

3 0.00 0.74

2.5 1.00 0.96

2 1.00 1.00

1.5 0.99 0.93

1 0.00 1.00

QV 0.76

Table 5.23: The quality of the numerical model GM,2 compared to the experimental model GE

x [m] QV,i(y) QV,i(z)

3 0.99 0.95

2.5 0.99 0.96

2 0.98 0.98

1.5 1.00 0.97

1 0.99 0.98

QV 0.98
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Figure 5.64: dt/dF under the same excitation using the first model GM,1
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Figure 5.65: dt/dF under the same excitation using the second model GM,2

5.2.5 Design of Experiments

Since it was observed that cables might have a damping effect and based on the results of the

SDOF example, figure 3.14, impulse excitation was chosen to investigate the cable’s effect. The

cumulative signal energy d of the acceleration time histories [ü(t)] = [ÿ(t), z̈(t)] were used as

an output structural response to detect damage. The variation of the structural response due

to uncertainty in the mass of the sensor was omitted since it was possible to measure it in the

laboratory.

For both developed numerical models GM,1 and GM,2, the uncertainty in the elastic modulus

of the cantilever Ep was considered. The influence of the asymmetry of the variation of the

structural response was investigated by including the force Fy as a random variable. In the
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Table 5.24: The statistical properties of the prior density functions of the input parameters of

the developed numerical model GM,1

Fw,1 [N] Fw,2 [N] Ep,1 [N/mm2] Ep,2 [N/mm2] Ec [N/mm2] Fy/Fz

µ 15 15 3500 3500 15 0.5

Max 20.19 20.19 4712 4712 28 2.23

Min 9.81 9.81 2288 2288 2 -1.232

COV 0.2 0.2 0.2 0.2 0.5 2

case of the first model GM,1, the uncertainty in the elastic modulus of the cables EC was

considered. In the second model GM,2, the uncertainty in the properties of the cables as

dampers was considered. The studied uncertainty was introduced in the numerical model by

assigning probabilistic models based on the uniform distribution to the chosen parameters,

table 5.24 and table 5.25.

Similar to what was applied in the previous section, the time history of the impulse excitation

Fz for damage case 1 (no damage: θg1 = 0), which was recorded during the laboratory modal

test and shown in figure 5.51, was applied after applying Fw and performing the initial transient

analysis. The energy of noise signal dγ due to ambient vibration excitation γF was considered

0.05 × dt,min. dγ was chosen based on the response of the structure without excitation. As a

result, d̄ = dt − dγ = 0.95 × dt,min. Uncertainty ǫ due to instrumentation, initial conditions

and sensor quality was considered as a normally distributed uncertainty with zero mean and

standard deviation σǫ = 0.05d̄, eq. (5.28). In this example, σǫ was assumed. However, it can

be increased if other factors influence the response.

ǫ ∼ N (0, σ2
ǫ ) (5.28)

Table 5.25: The statistical properties of the prior density functions of the input parameters of

the developed numerical model GM,2. Cd,y,1, Cd,y,2, Cd,z,1 and Cd,z,2 are given in

N×s/mm

Fw,1 [N] Fw,2 [N] Ep,1 [N/mm2] Ep,2 [N/mm2] Cd,y,1 Cd,y,2 Cd,z,1 Cd,z,2 Fy/Fz

µ 15 15 3500 3500 0.004 0.004 0.004 0.004 0.5

Max 20.19 20.19 4712 4712 0.0075 0.0075 0.0075 0.0075 2.23

Min 9.81 9.81 2288 2288 0.0005 0.0005 0.0005 0.0005 -1.232

COV 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 2

A Latin hypercube sampling method was used to generate N = 1000 samples to investigate

the variation of the response d due to the input parameters {θ}. The size of the sample was
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chosen as a trade off between the required computational time and quality of the Meta-models

that were developed in the next step to solve more samples. The structural response ü(t) =

[ÿ(t), z̈(t)] for damage case 1 (θg = 0) was computed for each sample. The cumulative signal

energy values {d} of the acceleration time histories ü(t) were computed based on eq. (3.5). For

all samples, the initial conditions u(0) = u̇(0) = 0 and a constant excitation Fz were applied.

5.2.6 Sensitivity analysis

The sensitivity analysis method described in section 3.4 was used to obtain information about

the contribution of {θ} to the outputs {d}. Meta-models {d} were developed to perform the

sensitivity analysis. The data sets which include N = 1000 samples calculated in the previous

subsection were used. The statistical properties of the residuals were examined to ensure that

they satisfy the requirements described in section 3.4.4. The Total-effect index sT values were

calculated using [d] for both models GM,1 and GM,2. Figure 5.66 shows the results of the applied

sensitivity analysis.

In case of the first model GM,1 the Total-effect index sT values show that the studied structural

response is sensitive to Fy, Ep,1 and Ep,2. This means that the asymmetry of the structure

influences the studied response more than the studied damage.

In case of the second model GM,2, the Total-effect index sT values show that the studied

structural response is sensitive to Fy, Ep,1, Ep,2 and the damping constant Cd,y. Since Cd,y is

a part of the studied damage model, it is expected that if the second model GM,2 is chosen to

evaluate the performance of the inspection method, damage will be detected faster than if the

first model GM,1 is chosen. The quality of the DOE models considering GM,1 and GM,2 can be

obtained based on the eq.(5.29).

QDOE =



































sT (Fw,1, Fw,2, EC)

sT ({θ}|GM,1)
=

0.06

10.2
≈ 0 for GM,1

sT (Fw,1, Fw,2, Cd,y,1, Cd,y,2, Cd,z,1, Cd,z,2)

sT ({θ}|GM,2)
=

1.52

10.6
≈ 0.15 for GM,2

(5.29)

5.2.7 Model updating

Meta-models {d̂} = f({θ̂}) were developed for model updating. In case of the first model

GM,1, three parameters were considered to be important {θ̂} ≡ {Ep,1, Ep,2, Fy/Fz}. In

case of the second model GM,2, five parameters were considered to be important {θ̂} ≡
{Ep,1, Ep,2, Cd,y1, Cd,y2, Fy/Fz}. Uniform distribution-based prior probability density functions,

given in table 5.24 and table 5.25, were assigned to the input parameters that should be updated.
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Figure 5.66: Total-effect index sTi,j calculated using the numerical models GM,1 and GM,2.

Channel numbers from 1 to 5 are in y direction, and 6 to 10 are in z direction.

Applying the Bayesian updating approach explained before in section 3.5, the posterior density

functions p({θ}|{d̄}) of the parameters {θ̂} were computed in case of both numerical models,
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figures 5.67, 5.68. The statistical properties of the posterior density functions of the input

parameters for each numerical model are presented in tables 5.26, 5.27.

In case of the first numerical model GM,1, applying model updating produces a significant

difference between Ep,1 and Ep,2 to represent the influence of the asymmetry of the structure

on the studied structural response. In case of the second numerical model GM,2 the influence of

the asymmetry of the structure was maintained by increasing Fy/Fz and the difference between

Ep,1 and Ep,2.

In order to evaluate the quality of the measurements for each numerical model, the index QM

given in eq. (3.47) was computed. In case of GM,1, the parameter related to damage which was

Ec in this example was not updated. Therefore, QM,1 = 0. In case of GM,2, only 2 parameters

of 6 related to damage were updated. They are: Cd,y1 and Cd,y2. Therefore, QM,2 can be

calculated as follows:

QM,2 = 1 − 1

6
(
σCd,y1|d̄

σCd,y1

+
σCd,y2|d̄

σCd,y2

) = 1 − 1

6
(
7 × 10−5

5 × 10−4
+

2 × 10−5

5 × 10−4
) = 0.3 (5.30)

5.2.8 Assessment of the inspection method

The developed method in section 3.6.2 was applied. Damage θgi ∈ [0 90%] × 15 [N] was used

to calculate the response di(θ
g
i ) with an interval ∆θg = 0.015 × 15. Based on eq. (3.63), if

(PFP=0.05) and for n=10 output (channels), N=196. The number of samples for each damage

step ∆θg was increased until POD(θgi ) converged. The investigation shows that N = 1000

samples for each damage step are sufficient to obtain constant POD curves.

Table 5.26: The statistical properties of the posterior density functions of the input parameters

calculated using GM,1

Ep,1 [N/mm2] Ep,2 [N/mm2] Fy/Fz

µ 7100 2575.6 0.25

σ 27.4 41.3 0.008

Table 5.27: The statistical properties of the posterior density functions of the input parameters

calculated using GM,2

Ep,1 [N/mm2] Ep,2 [N/mm2] Cd,y,1 [N×s/mm] Cd,w,y,2 [N×s/mm] Fy/Fz

µ 8520.5 6549.3 0.0018 0.0019 0.40

σ 141.3 104.2 7 × 10−5 2 × 10−5 0.011
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Figure 5.67: Posterior density functions of the updated input parameters using {d̄, GM,1}
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Figure 5.68: Posterior density functions of the updated input parameters using {d̄, GM,2}

In case of GM,1, damage was increased by reducing Fw and Ec based on eq. (5.23) as follows:

∀θg∆i, θg∆i+1 : θg∆i+1 = θg∆i+ ∆θg ⇒ Fw,∆i+1 = Fw,∆i− 0.015 × 15, EC,∆i+1 = 3.125 ×Fw,∆i+1 + ǫEc

(5.31)

where Fw,∆i refers to the cable forces after reducing it by 0.015 × 15 × i where i = 1, 2, · · · . ǫEc

refers to the uncertainty of Ec which is given in table 5.24.

In case of GM,2, damage was increased by reducing Fw, Cd,y and Cd,z as follows:
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∀θg∆i, θg∆i+1 : θg∆i+1 = θg∆i+∆θg ⇒ Fw,∆i+1 = Fw,∆i−0.015×15, Cd,∆i+1 = Cd,∆i−0.015×Cd,0+ǫCd

(5.32)

where Cd,∆i refers to the damping constant of the cable after reducing it by 0.015×Cd,0×i where

i = 1, 2, · · · . Cd,0 refers to the initial value of the damping constant corresponded with damage

case 1 (no damage) after model updating. Cd,0 value is given in table 5.27. ǫCd
refers to the

uncertainty of Cd,0 after model updating. Figure 5.68 shows that the posterior density functions

p(Cd|d̄) have a distribution shape close to the normal distribution. Therefore ǫCd
∼ N (0, σ2

ǫCd|d̄
).

σǫCd|d̄
values are given in table 5.27.

Figures 5.69 and 5.70 show that the reliability of the studied inspection method depends on

the chosen numerical model. Based on the problem definition given in eq. (5.20), in case of

GM,1, the smallest damage that can not be missed is θg ≈ 7 N. However, in case of GM,2, the

smallest damage that can not be missed is θg ≈ 0.22 N.

The inspection method was evaluated at θg = 0.5 N by computing the index QD using eq. (3.61).

It was found that QD(GM,1) = 0 and QD(GM,2) = 1.

The developed method in section 3.6.2 was applied to calculate the probability of damage

detection using experimental data. 10 samples were used for damage case. The result is

presented in figure 5.71. The results show that detecting damage is faster than what GM,1

show. However, it is not possible to compare the results directly to GM,2 results since smaller

damage size interval in case of experiments is required.
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Figure 5.69: POD(θg) curve using GM,1
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Figure 5.70: POD(θg) curve using GM,2
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5.2.9 Conclusion

In this example, the performance of a vibration-based inspection method to detect damage in

a cantilever structure was tested. Two damage models were considered. The following results

can be pointed out:

• The reliability of the inspection method depends on the defined damage model.

• All phenomena which might influence the response of the structure and could cause false

alarm should be investigated. For example, the asymmetry and nonlinear behavior.

• The quality of the assessment of the performance of the inspection method is independent

of the representation of the phenomena considered in the developed models. QD quantifies

the reliability of an inspection method. The accuracy of the computed QD quantifies the

quality of the reliability assessment method, and this depends on the accuracy of QV ,

QDOE, and QM as well.

• Sufficient damage size interval is required to evaluate the performance of the chosen

inspection accurately.



Chapter 6

Reference Object: Pole

6.1 Introduction

In many engineering disciplines, such as mechanical engineering, producing large amounts of

standardized products provides the opportunity to apply a well-defined reliability assessment

procedure which is based on inspecting a large number of samples that emulate a real structure

or a part of it. Strict statistical restrictions related to the test conditions, for example, the

number of samples, damage size interval, the number of repetition can be precisely followed.

In civil engineering discipline, each structure is a unique product. Therefore, in most cases

applying a traditional reliability assessment procedure is not possible. However, there are some

rare cases where civil engineering standardized products are produced in large amounts. In this

chapter, one of these rare cases is presented.

The main objective of this application is to investigate the performance of an inspection method

for damage detection in identical structures. Poles used for electricity cables or light poles,

provide the opportunity to investigate the variability of many nearly identical structures.

The influence of choosing different experimental models GE on the reliability of the inspection

method for damage detection is investigated taking into account two test setups.

The test setups and the modal parameters obtained from experiments are presented. The

numerical model is used to perform a statistical study and to calculate the probability of

damage detection.

6.2 Problem definition and test setup

A series of poles that will be used to carry the catenary system of a new railway line was chosen

for this investigation. Since sets of the poles were designed and manufactured to be identical,

178
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(b) Sketch of a pole structure

Figure 6.1: One of the studied pole structure and a sketch shows cross sections

they proved to be the perfect candidates for repeated experimentation. Their location along

a railway construction site also provided convenient access to a large number of them in close

proximity.

While the structural system is rather simple (a cantilever), the fact that there is a large

number of identical poles allows for types of investigations that are usually not possible for

most civil engineering structures. Each pole considered in this study was of the same type

(same material, reinforcement, and intended use) and is 10 m tall including the foundation,

figure 6.1. During the production process each pole was pre-stressed by applying a tension force

Fps on the reinforcement before casting concrete. The tension was released and transferred to

the concrete as compression after the concrete cured.

Dynamic measurements were collected using uniaxial accelerometers. A test system was

constructed to attach the sensors on each pole quickly and to ensure that the measurement

locations remained the same relative to the top of the structure. Ribbons were placed on each

side of a wooden plate to create two lines of sensors perpendicular to each other. Small wooden

blocks were placed along the ribbons at a distance of 0.75 m that conformed to the shape

of the pole and had small steel plates fixed to them. The accelerometers were fastened to a

separate set of steel plates of the same size with high strength magnets on the opposite side.

Elastic bands were wrapped around the pole and fixed to the wooden blocks to keep them

securely fastened to the structure. The sensor magnet assembly could then be quickly fixed to
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and removed from the pole at each measurement location. Environmental conditions, such as

wind and temperature, could not be controlled since the measurements were taken outside on

site. However, the temperature was measured during each test. Generally, temperature varied

between 20◦ and 25◦ C. Although no wind speed measurement was performed, it was observed

that often the wind speed in the last two days was higher than the wind speed in the first

two days. A total of 26 poles were investigated over the course of four days. At that time the

construction site was not finished only cables with different sag/tension were attached to the

poles, and no catenary was installed.

According to the orientation of the accelerometers, the coordinate system was defined as follows:

z: vertical, x and y: horizontal. The sensors were placed to construct almost 45◦ according to

the cables, figure 6.2.

Two setups of the accelerometers were used, table 6.1,: one reference and five roving sensors

per setup and measurement direction. This totaled in 11 components in each direction with a

reasonably dense vertical grid over the top 7.5 m of the pole, figure 6.3. Four different excitations

where used: sweep sine shaker in x-direction applied to the top of the pole, ambient, hammer

in y-direction applied close to 2.5 m measured from the base of the pole (about 2 m above the

ground level), and Gaussian white noise from the shaker in x-direction applied to the top of

the pole.

In this study, the influence of the cables on the structural response was investigated similar to

the cantilever example in chapter 5. Therefore, the focus was only on the results obtained from

the hammer excitation. The primary goal was to obtain the minimum damage size that can

be missed considering different experimental models GE and two sensor setups (S1 and S2 in

table 6.1).

Cable

uniaxial sensors (accelerometers)

Pole

y x

z

Figure 6.2: Top view of the sensor location
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Figure 6.3: Developed test system used to perform dynamic measurements on the studied

structure

Table 6.1: Sensor locations for each test setup measured from the base of the pole

Sensor Nr.

Setup 1 2 3 4 5 6 Ref.

S1 2.5 4 5.5 7 8.5 10 [m]

S2 3.25 4.75 6.25 7.75 9.25 10 [m]

∀θg : POD(θg + ∆θg) = 1 and POD(θg − ∆θg) < 1 and PFP ≤ 0.05 given GE,ip, Sis (6.1)

where ip = 1, 2, · · · , 26 refers to the chosen pole and is = 1, 2 refers to the chosen setup.
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6.3 Test results

The acceleration time histories from each excitation and pole were combined between the two

setups and used to identify the dynamic properties of each pole using the procedure explained

in appendix C where the stochastic subspace identification (SSI) method was used to obtain

the modal parameters, which are summarized in table 6.2 by their occurrence and statistical

properties. Eight modes were consistently identified on the poles, figures 6.5 – 6.8. 16 poles

were analyzed to get the statistical properties. For each pole, several tests were performed.

The mean values of the frequencies and modal damping for each pole and for each mode were

computed from different tests. Finally, the mean value of the means and the standard deviation

of the means of the modal parameters were calculated and presented in table 6.2 for the 16

poles. In some tests, especially under impulse excitation, it was not possible to obtain all 8

modes.

The results show that structures assumed to be identical show considerable variation in their

dynamic parameters. It was found that uncertainty in the damping ratios was more significant

than the uncertainty in frequencies. The uncertainty of the mode shapes increases in case of

higher modes.

The signal energy d̄t of the recoded acceleration signals was calculated for each applied impulse

and for each setup in x and y direction based on eq. (3.5), figure 6.9 and 6.10. The results show

that although the excitation force was applied in y direction, the values of the signal energy in

x direction d̄t(x) in many cases may reach about 50 % of the signal energy values in y direction

d̄t(y), d̄t(x) ≈ 0.5d̄t(y). The asymmetry of the system caused by cables or other factors can be

the reason of obtaining these results.
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|FFT (ẍ(t))|

(b) |FFT| shows the response of the structure in

frequency domain

Figure 6.4: Structural response at the top of the pole Nr.262-28 under an impulse excitation
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Table 6.2: Statistical properties of the natural frequencies and modal damping ratios extracted

from measurements obtained from 16 poles

1 2 3 4 5 6 7 8

µf [Hz] 3.476 3.912 17.480 17.601 45.634 45.203 87.465 87.958

σf 0.069 0.082 0.519 0.303 0.948 0.993 1.274 1.038

COV 0.020 0.021 0.030 0.017 0.021 0.022 0.015 0.012

µζ% 0.595 5.173 2.043 0.768 2.099 2.235 3.666 3.662

σζ 0.268 2.370 0.821 0.250 1.055 0.729 0.452 0.677

COV 0.450 0.458 0.402 0.325 0.503 0.326 0.123 0.185

6.4 Numerical model

Two finite element models were developed to investigate the influence of the cables on the

studied structure, figure 6.11. A shell element type was used to model the pole, and a beam

element type was used to model the reinforcement bars. The cables were modeled in the first

numerical model GMR, figure 6.11 (a), which is considered as a reference model. In the second

numerical model GM , figure 6.11 (b), the cables were replaced by a mass point equivalent to

the mass of the cables. The influence of the stiffness of the cables was ignored in GM . Checking

the quality of GM compared to GMR in case of damage detection can show if the stiffness of the

cables influences the assessment of the performance of the chosen inspection method. Moreover,

replacing the cables with a mass point reduces the computational time of about 40 %.

Based on the construction plans of the pole and the cables provided by the manufacturer, it

was possible to obtain all the inputs related to the geometrical and the material properties

as well as the pre-stress force Fps. Ten cross sections were used to consider the variation of

the cross-section of the pole from the base to the top. The variation of the cross section was

considered to be linear along the height of the pole.

Since the results of the modal tests show that mode 2 has high damping ratios, it is expected

that the cables have a damping effect. Therefore, two viscous dampers were added to the

model. The first damper, which has a constant Cd,1, was oriented perpendicular to the cables

and the second damper, which has a constant Cd,2, was oriented in the direction of the cables.

The dampers were attached to the pole model in the same node where the cables attached to

the pole in the reference model GMR. If the pole behaves similar to the PVC cantilever which

was studied in the previous chapter, it can be expected that damage influences both the first

and second modes more than the higher modes. This means if measurements don’t capture

both first modes, damage may be detected late, or even the inspection method could not be

reliable to detect the required damage size.
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Figure 6.5: Mode shapes 1 and 2 extracted from experimental data
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Figure 6.6: Mode shapes 3 and 4 extracted from experimental data
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Figure 6.7: Mode shapes 5 and 6 extracted from experimental data
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Figure 6.8: Mode shapes 7 and 8 extracted from experimental data
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Figure 6.9: d̄t under 30 impulse excitation setup 1, pole Nr.262-28
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Figure 6.10: d̄t under 30 impulse excitation setup 2, pole Nr.262-28

The initial values of Cd,1 and Cd,2 can be estimated similar to the cantilever example in the

previous chapter. The kinetically equivalent mass in case of the first mode Mp,1 in both

directions was approximated here as 25% of the total mass using the simplified assumption

of a constant mass distribution. Including the mass of the cables Mc, Mp,1 ≈ 0.35 t.

ωE,1 ≈ 2 × π × 3.5 = 22 rad/s. The critical damping is Cc ≈ 2 × 350 × 22 ≈ 15400 N×s/m. It

was assumed that Cd ≈ 0.1 × 15400 = 1540 N×s/m = 1.54 N×s/mm. In order to include the

uncertainty when estimating the effective modal mass from the first mode without considering

the higher modes, and the uncertainty of ζE the range Cd = [1–20] N×s/mm was considered in

the next steps.

The shell elements were meshed to smaller elements with a maximum size of (40 × 40) mm2.

The reinforcement bar beam elements were meshed in a way that the start and the end of each
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beam element are coupled to two edge nodes of a shell element. The beam elements of the

cables in the reference model GMR were meshed to 500 mm size elements.

Since the sensors were rotated about 45◦ from the cables, the global numerical models GMR

and GM were rotated 45◦ about the z-axis. As a result, the computed acceleration signals in x

and y-direction can be compared to the measurements directly.

The pole was fixed to the base until 50 cm high before adding the soil which may cover from

Lp = 0 to 1 m of the lower part of the pole. The variation of Lp is because that the railway

was still under construction.

To include the influence of the force Fp on the dynamic response of the structure, a transient

analysis was performed after applying Fp to the reinforcement bars as an axial load along their

length. The self-weight was included as well to obtain the influence of the mass of the cables

on the structure. To avoid the vibration of the structure during the performed analysis, a large

damping value was assigned to the model by increasing α in the Rayleigh damping model as

shown in figure 6.12. Moreover, after applying the loads, a sufficient duration was considered (1

second) until the response of the model was damped to zero. As a result, the dynamic influence

(a) Numerical model of the studied pole with cables

GMR

(b) Numerical model of

the studied pole GM .

Cables were replaced by a

mass point

Figure 6.11: Numerical models developed for evaluating the performance of the studied

inspection method
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of the applied loads was prevented. After that, the time history of the impulse excitation

was applied at the node which represents the location where impulse force was applied on the

site. In this stage, the mean values of the modal damping ratios extracted from measurements

and presented in table 6.2 was used to develop the Rayleigh damping model, eq. (5.5), with

α = 2.47 and β = 1.25e−04. Since no input impulse excitation was measured, the impulse force

presented in the previous chapter for in figure 5.51 was applied after amplifying its amplitude 10

times. The frequency rate was chosen as ∆f = 4096 Hz. The computed structural response of

the pole is presented in figures 6.14 and 6.15. In the case of GMR, the noise was observed after

applying the impulse. This means that smaller time step ∆t may be required. The computed

acceleration signals under the applied impulse excitation were used for system identification

applying the SSI method following the procedure explained in appendix C considering the

values of the input parameters for damage case 1 presented in table 6.5 for GMR and 6.6 for

GM . Tables 6.3 and 6.4 show the obtained frequencies and damping ratios from the simulated

results. Figures 6.16 – 6.18 and 6.19 – 6.21 show the extracted mode shapes. The results show

that it was not possible to obtain the first 2 mode shapes in case of GMR and the first 3 mode

shapes in case GM . Several reasons can be behind not capturing the missing mode shapes. For

example, high damping ratios, weak system identification analysis and/or lack of computed

experiment. Improving the results may require performing better data processing and/or more

computed experiments. Obtaining a precise explanation requires more investigation.

For calculating the quality of the numerical model GM compared to the reference model GMR

for damage detection, five damage cases were studied. Damage was introduced in GM by

reducing the mass of the cables and the damping constants of the dampers as shown in table

6.6. Damage was introduced in GMR by reducing the diameter of the cables and the constants

of the dampers as shown in table 6.5. The signal energy dt of the acceleration signals was

calculated in x and y directions based on eq. (3.5) for each damage case under the same applied

impulse, figures 6.22 and 6.23. The agreement between the developed numerical model GM

and the reference model GMR was computed applying eq (3.3) taking into account the studied

damage model and the applied excitation. The results are presented in table 6.7. The values

of QV show that the stiffness of the cables has a local effect on the response of the node close

where the cables are attached to the pole, otherwise, no influence on the response of the other

pole nodes was observed. Since the mean value, QV ≈ 1, the evaluation process of the chosen

inspection method for damage detection is expected to remain valid although the stiffness of

the cables was omitted.

6.5 Design of experiments

Since it was observed that cables might have a damping effect and based on the results of the

SDOF example, figure 3.14, impulse excitation was chosen to investigate the cable’s effect. The
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Figure 6.12: The contribution of the mass of the structure in the Rayleigh damping model

during performing transient analysis
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Figure 6.13: Rayleigh damping model included in the pole numerical models

Table 6.3: The natural frequencies and modal damping ratios extracted from the simulated

test using GMR

1 2 3 4 5 6 7 8

f [Hz] 16.97 17.2 45.07 45.25 85.17 85.31

ζ% 5.96 6.21 0.62 0.72 0.36 0.31
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Figure 6.14: Simulated dynamic structural response at the top of the pole due to the excitation

in figure 5.51, damage case 1, using the numerical model GMR
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Figure 6.15: Simulated dynamic structural response at the top of the pole due to the excitation

in figure 5.51, damage case 1, using the numerical model GM

Table 6.4: The natural frequencies and modal damping ratios extracted from the simulated

test using GM

1 2 3 4 5 6 7 8

f [Hz] 16.79 44.94 45.02 84.58 84.79

ζ% 4.69 0.567 0.589 0.757 0.332

cumulative signal energy d of the acceleration time histories [ü(t)] = [ẍ(t), ÿ(t)] were used as an
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Figure 6.16: Mode shapes 3 and 4 extracted from the simulated test using GMR
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Figure 6.17: Mode shapes 5 and 6 extracted from the simulated test using GMR
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Figure 6.18: Mode shapes 7 and 8 extracted from the simulated test using GMR
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Figure 6.19: Mode shape 4 extracted from the simulated test using GM
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Figure 6.20: Mode shapes 5 and 6 extracted from the simulated test using GM
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Figure 6.21: Mode shapes 7 and 8 extracted from the simulated test using GM
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Table 6.5: The input parameters of GMR used to calculate QV

Damage case θg % dc Cd,1 [N×s/mm] Cd,2 [N×s/mm] Fy/Fz 10 − Lp [m]

1 0.00 1.000 dc 10 10 0.0 9.5

2 0.25 0.875 dc 8 8 0.0 9.5

3 0.50 0.750 dc 6 6 0.0 9.5

4 0.75 0.625 dc 4 4 0.0 9.5

5 1.00 0.500 dc 2 2 0.0 9.5

Table 6.6: The input parameters of GM used to calculate QV

Damage case θg % dc Cd,1 [N×s/mm] Cd,2 [N×s/mm] Fy/Fz 10 − Lp [m]

1 0.00 1.000 Mc 10 10 0.0 9.5

2 0.25 0.767 Mc 8 8 0.0 9.5

3 0.50 0.564 Mc 6 6 0.0 9.5

4 0.75 0.391 Mc 4 4 0.0 9.5

5 1.00 0.255 Mc 2 2 0.0 9.5

Table 6.7: The quality of the numerical model GM compared to the reference model GMR

z [m] QV (x) QV (y)

10.0 1.00 1.00

9.25 0.91 0.83

8.50 0.99 0.99

7.75 1.00 1.00

7.00 1.00 1.00

6.25 1.00 1.00

5.50 1.00 1.00

4.75 1.00 1.00

4.00 1.00 1.00

QV 0.98

output structural response to detect damage. The uncertainty of the input parameters that were

obtained from the construction plans of the pole and the cables provided by the manufacturer

was omitted, for example, the pre-stress force Fp, the wall thickness of the pole, the concrete

and reinforcement properties. As a result, in this example, the uncertainty of the parameters,

which were not measured either provided by the manufacturer and may influence the damage
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Figure 6.22: dt under the same excitation using the reference model GMR
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Figure 6.23: dt under the same excitation using the model GM

detection process, were considered. Similar to the cantilever results in the previous chapter, the

natural frequencies of the studied poles obtained from the model tests show that the system

is asymmetric. Moreover, since the impulse excitations were applied by hand, it is expected

that the excitation may not be applied in y-direction correctly. Therefore, an additional force

component in x-direction was considered.

In order to consider the variation of LP related to the lower part of the pole, different sets of

nodes were defined to represent different boundary conditions at the basement. The first set

considers that all degrees of freedom of the nodes located at z=0 m are fixed. The last node

set considers that all degrees of freedom of the nodes located between 0 ≤ z ≤ 1 are fixed. In

general, for a set A that contains j = 1, 2, · · · , k nodes (nj), that have 6 degrees of freedom, it

is possible to write:
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∀nj ∈ A : 0 ≤ z(nj) ≤ Lp ⇒ DOFl(nj) = 0|l = 1, 2, · · · , 6 (6.2)

Table 6.8 presents the statistical properties assigned to the damper constants, the excitation

amplitude in x and y-direction, the mass of the cables as a part of the studied damage model

and length of the pole.

A Latin hypercube sampling method was used to generate N = 1000 samples to investigate

the variation of the response d due to the input parameters {θ}. The size of the sample was

chosen as a trade off between the required computational time and quality of the Meta-models

that were developed in the next step to solve more samples. The structural response ü(t) =

[ẍ(t), ÿ(t)] for damage case 1 (θg = 0) was computed for each sample. The cumulative signal

energy values {d} of the acceleration time histories ü(t) were computed based on eq. (3.5). For

all samples, the initial conditions u(0) = u̇(0) = 0.

6.6 Sensitivity analysis

The sensitivity analysis method described in section 3.4 was used to obtain information about

the contribution of {θ} to the outputs {d}. Meta-models {d} were developed to perform the

sensitivity analysis. The data sets which include N = 1000 samples calculated in the previous

subsection were used. The statistical properties of the residuals were examined to ensure that

they satisfy the requirements described in section 3.4.4. The Total-effect index sT values were

calculated using [d]. Figure 6.24 shows the results of the applied sensitivity analysis.

The results show that the amplitude of the excitation Fy influences the studied structural

response in the x-direction. The large structural response in x-direction indicates that Fx,

which can be caused by the asymmetry of the structure or the imperfection of the application

of Fy, is large. As a result, the probability of damage detection may depend on the asymmetry

model introduced in the numerical model.

Table 6.8: The statistical properties of the prior density functions of the input parameters of

the developed numerical model GM

Cd,1 [N×s/mm] Cd,2 [N×s/mm] Fy [N] Fx [N] Mc [t] 10 − Lp [m]

µ 7 7 20 5.0 0.055 8.5

Max 13 13 37.3 9,3 0.010 10

Min 0.95 0.95 2.7 0.67 0.0074 7

COV 0.5 0.5 0.5 0.5 0.5 0.1
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Figure 6.24: Total-effect index sTi,j calculated for the two setups given in table 6.1. Channel

numbers from 1 to 11 are in x direction, 12 to 22 are in y direction. 11 is x

reference and 22 is y reference at the top of the pole
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The Total-effect index sT show that the influence of the cable should be considered as a damper

and as a mass point. Moreover, the variation of the Lp has to be taken into account otherwise

false alarm is expected.

Based on eq.(6.3), the quality of the DOE models can be obtained. QDOE(S1) = 0.09 and

QDOE(S2) = 0.07.

QDOE =
sT (Cd,1, Cd,2,Mc)

sT ({θ}))
(6.3)

6.7 Model updating

Meta-models {d̂} = f({θ̂}) were developed for model updating. In this example, the geometrical

and material properties of the cables are given in the construction plan. Therefore, the

uncertainty in the mass of the cable was not considered. All other inputs were considered

to be important {θ̂} ≡ {θ \ Mc}. The statistical properties of the prior density functions

are based on the uniform distribution, table 6.8 . Applying the Bayesian updating approach

explained before in section 3.5, the posterior density functions p({θ}|{d̄}) of the parameters

were computed considering each setup separately. Since the input impulse excitation was not

measured during the test, it should be included as an unknown parameter. As a result, if N

impulse responses are used to update the model, 3+2×N input parameters have to be updated.

They are three common input parameters Cd,1, Cd,2, Lp and two parameters Fy,im, Fx,im for each

input impulse im. It is important to mention that after applying an impulse, the response of

the structure decayed to its static state before applying the next impulse.

In this study, for each pole, three independent impulse responses were used to update the

model. As a result, 9 parameters were included.

Since each input excitation was identical and no repetition was applied, it is not possible to

ensure that the noise was at its minimum level. To estimate the noise energy dγ, the cumulative

energy of each impulse was computed for each ∆t. Since the shape of the cumulative energy

of an impulse without noise is known, the noise energy can be estimated approximately as

shown in figure 6.25 and eq. (6.4). As a result, d̄ = dt − dγ. The procedure was applied to all

measurement data and all poles. Two examples for estimating dγ from real measurements are

presented in figure 6.26. Uncertainty ǫ due to instrumentation, initial conditions and sensor

quality was considered as a normally distributed uncertainty with zero mean and standard

deviation σǫ = 0.2d̄. This value is reasonable because of the influence of the wind on the

instrumentation system. The statistical properties of the posterior density functions of the

updated input parameters are presented in tables 6.9, 6.10.

In order to evaluate the quality of the measurements for each setup S1 and S2, the index QM
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Figure 6.25: Estimation of the noise energy dγ in an impulse response dt

given in eq. (3.47) was computed. The results are shown in tables 6.9 and 6.10. The results

show that although low design of experiments quality values QDOE < 10% were obtained, it was

possible to obtained QM > 90%. This is because of using three independent impulse responses

to update the system, Nd̄ = 3.

dγ = d2(t2) − d1(t1) (6.4)
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Figure 6.26: Acceleration signal time history with about 10% noise

An example of the posterior of the updated parameters is shown in figure 6.28 in case of S1

and in figure 6.29 in case of S2 for pole number 9 (239-25). The updated amplitudes of the

excitations in x and y directions of the three applied impulses are shown in figure 6.30 and

figure 6.31.
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Figure 6.27: Acceleration signal time history with about 2% noise

6.8 Assessment of the inspection method

The developed method in section 3.6.2 was applied. Damage θgi ∈ [0 50%] ×Mc [ton] was used

to calculate the response di(θ
g
i ) with an interval ∆θg = 0.015 × Mc. Based on eq. (3.63), if

(PFP=0.05) and for n=22 output (channels), N=430. The number of samples for each damage

step ∆θg was increased until POD(θgi ) converged. The investigation shows that N = 2000

samples for each damage step are sufficient to obtain converged POD curves.

Damage was introduced in GM by reducing Mc and Cd as follows:

∀θg∆i, θg∆i+1 : θg∆i+1 = θg∆i+∆θg ⇒ Mc,∆i+1 = Mc,∆i−0.015×Mc,0, Cd,∆i+1 = Cd,∆i−0.015×Cd,0+ǫCd

(6.5)

where Mc,∆i refers to the mass of the cable after reducing it by 0.015×Mc,0×i where i = 1, 2, · · · .

Mc,0 refers to the initial value of the mass of the cable. Cd,∆i refers to the damping constant of

the cable after reducing it by 0.015 ×Cd,0 × i where i = 1, 2, · · · . Cd,0 refers to the initial value

of the damping constant corresponded with damage case 1 (no damage) after model updating.

Cd,0 value is given in table 6.9 and table 6.10 for each pole. ǫCd
refers to the uncertainty of Cd,0

after model updating. Figures 6.28 and 6.29 show that the posterior density functions p(Cd|d̄)
have a distribution shape close to the normal distribution. Therefore ǫCd

∼ N (0, σ2
ǫCd|d̄

). σǫCd|d̄

values are given in table 6.9 and table 6.10 for each pole.

Figures 6.32 and 6.33 show that the reliability of the studied inspection method depends on

the chosen experimental model and the test setup. Table 6.11 shows the minimum damage size

that can be missed. The results show that applying setup 2; damage can be detected faster

than applying setup 1.
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Table 6.9: The statistical properties of the posterior density functions of the common input

parameters. Pole 1–13. Cd,1 and Cd,2 are given in [N×s/mm]

Pole Nr.
S1 S2

Cd,1 Cd,2 Lp [m] QM Cd,1 Cd,2 Lp [m] QM

1
µ 8.76 19.82 1.00 12.84 15.56 0.48

σ 0.252 0.159 0.014 97% 0.168 0.174 0.038 98%

2
µ 6.29 2.64 0.00 15.81 4.80 0.67

σ 0.649 0.268 0.015 93% 0.240 0.530 0.029 94%

3
µ 13.92 8.46 1.00 9.90 2.38 0.88

σ 0.288 0.412 0.004 95% 0.329 0.164 0.024 96%

4
µ 17.41 8.28 0.04 13.90 16.68 0.52

σ 0.138 0.507 0.006 95% 0.234 0.211 0.021 97%

5
µ 17.14 12.11 0.71 13.66 15.78 0.13

σ 0.152 0.226 0.052 97% 0.132 0.261 0.030 97%

6
µ 7.90 8.01 0.00 16.56 2.77 0.34

σ 0.526 0.490 0.010 93% 0.273 0.203 0.011 97%

7
µ 13.44 16.77 0.42 15.97 15.59 0.01

σ 0.139 0.181 0.047 98% 0.103 0.061 0.017 99%

8
µ 9.46 8.94 0.23 5.28 7.88 0.46

σ 0.784 0.632 0.057 90% 0.94 0.55 0.03 89%

9
µ 16.60 15.95 0.24 15.64 15.81 0.43

σ 0.050 0.206 0.026 98% 0.137 0.169 0.031 98%

10
µ 16.91 14.57 0.89 14.87 14.74 0.25

σ 0.099 0.197 0.026 98% 0.035 0.188 0.039 98%

11
µ 16.82 15.23 0.67 16.68 12.39 0.24

σ 0.109 0.121 0.034 98% 0.035 0.197 0.027 98%

12
µ 14.59 13.30 0.39 13.01 15.74 0.13

σ 0.196 0.283 0.048 97% 0.153 0.245 0.040 97%

13
µ 17.77 14.20 0.55 16.95 12.18 0.13

σ 0.122 0.240 0.028 97% 0.191 0.330 0.022 96%

The inspection method was evaluated at θg = 0.002 [ton] or θg = 2 kg by computing the index

QD using eq. (3.61).
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Table 6.10: The statistical properties of the posterior density functions of the common input

parameters. Pole 14–26. Cd,1 and Cd,2 are given in [N×s/mm]

Pole Nr.
S1 S2

Cd,1 Cd,2 Lp [m] QM Cd,1 Cd,2 Lp [m] QM

14
µ 10.65 1.93 0.01 10.48 4.20 0.47

σ 0.615 0.318 0.023 93% 0.536 0.093 0.042 95%

15
µ 11.52 5.04 0.09 15.10 13.13 0.58

σ 0.439 0.328 0.019 94% 0.247 0.336 0.023 96%

16
µ 17.71 5.21 0.84 14.88 6.67 0.23

σ 0.205 0.733 0.040 93% 0.232 0.543 0.021 94%

17
µ 11.98 7.36 0.71 9.65 15.09 0.46

σ 0.505 0.544 0.045 92% 0.707 0.535 0.039 91%

18
µ 11.27 14.45 0.25 17.49 17.54 0.88

σ 0.459 0.402 0.033 94% 0.121 0.163 0.017 98%

19
µ 11.55 11.33 0.06 15.01 12.80 0.47

σ 0.460 0.771 0.026 91% 0.101 0.252 0.031 97%

20
µ 6.03 7.88 0.00 15.95 15.92 0.60

σ 0.617 0.495 0.009 92% 0.149 0.162 0.027 98%

21
µ 16.67 6.40 0.58 12.08 17.60 0.70

σ 0.199 0.388 0.036 96% 0.218 0.142 0.023 97%

22
µ 17.04 9.42 0.03 14.74 15.13 0.40

σ 0.142 0.480 0.014 96% 0.161 0.207 0.037 97%

23
µ 10.36 4.79 0.98 13.08 12.21 0.00

σ 0.433 0.521 0.027 93% 0.243 0.203 0.019 97%

24
µ 14.38 16.29 0.46 12.68 20.69 0.77

σ 0.166 0.191 0.048 97% 0.126 0.081 0.013 99%

25
µ 17.22 12.15 0.49 14.96 11.05 0.34

σ 0.022 0.048 0.081 99% 0.111 0.340 0.028 97%

26
µ 13.84 16.15 0.68 14.61 15.63 0.12

σ 0.207 0.148 0.026 97% 0.075 0.229 0.031 98%
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Figure 6.28: Posterior density functions of the updated input parameters using d̄ from pole

Nr. 9 (239-25), Setup S1
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Nr. 9 (239-25), Setup S2
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Figure 6.30: Posterior density functions of the updated impulse excitation amplitudes in x and

y directions, S1
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Figure 6.31: Posterior density functions of the updated impulse excitation amplitudes in x and

y directions, S2
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Table 6.11: The minimum damage size that can be missed based on the problem definition in

eq. (6.1)

S1 S2

Pole Nr. θg [kg] Pole Nr. θg [kg] Pole Nr. θg [kg] Pole Nr. θg [kg]

1 8.3 14 5.0 1 2.5 1 5.0

2 6.6 15 5.8 2 4.1 2 3.3

3 4.1 16 5.0 3 3.3 3 3.3

4 2.5 17 5.8 4 2.5 4 6.6

5 1.7 18 6.6 5 2.5 5 1.7

6 5.8 19 7.4 6 2.5 6 2.5

7 1.7 20 9.1 7 1.7 7 1.7

8 11.6 21 4.1 8 6.6 8 3.3

9 1.7 22 2.5 9 1.7 9 1.7

10 1.7 23 5.0 10 1.7 10 3.3

11 1.7 24 2.5 11 1.7 11 2.5

12 2.5 25 1.7 12 3.3 12 3.3

13 2.5 26 2.5 13 3.3 13 2.5
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Figure 6.32: POD(θg) usingGM and different 26 pole experimental model, S1. Red: maximum

and minimum curves value
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Table 6.12: The index QD computed based on eq. (3.61) for θg = 0.002 [t] or θg = 2 kg

S1 S2

Pole Nr. POD(θg) Pole Nr. POD(θg) Pole Nr. POD(θg) Pole Nr. POD(θg )

1 0% 14 10% 1 75% 1 28%

2 2% 15 4% 2 20% 2 66%

3 18% 16 3% 3 41% 3 92%

4 58% 17 1% 4 90% 4 7%

5 83% 18 0% 5 89% 5 95%

6 3% 19 0% 6 68% 6 77%

7 88% 20 0% 7 100% 7 99%

8 0% 21 33% 8 7% 8 71%

9 94% 22 59% 9 100% 9 98%

10 73% 23 9% 10 99% 10 64%

11 100% 24 64% 11 100% 11 84%

12 71% 25 91% 12 65% 12 68%

13 57% 26 61% 13 73% 13 86%
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Figure 6.33: POD(θg) usingGM and different 26 pole experimental model, S2. Red: maximum

and minimum curves value
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6.9 Conclusion

In this example, the performance of a vibration-based inspection method to detect damage in

identical structures was tested. 26 poles as GE and two setups were considered. The following

results can be pointed out:

• The reliability of the inspection method depends on the chosen design of experiments and

the physical model.

• A numerical reference model GMR can be used to evaluate the quality of the developed

numerical model GM which could reduce the computational effort significantly.

• The probability of detection could be used to evaluate the quality of the measurements

in case of damage detection.



Chapter 7

Discussion

7.1 Introduction

Based on what was presented about state of the art, chapter 2, many types of damage can be

represented by many numerical and physical damage models which can be used if the reliability

of an inspection method should be evaluated. Therefore, it is important to mention that the

goal of this work was not to present and to test all damage models but to develop a general

framework which can provide an argument for choosing a specific model against others.

It can be challenging to develop a single inspection method that provides all damage

identification levels for all types of damage. Therefore, the developed strategy in this work

started with a problem definition to select specific damage in a specific structure to be detected.

The strategy developed in this work evaluates the assessment procedure followed to check the

reliability of the inspection method and shows which partial model should be improved if the

desired damage size is not detected. If the quality of the partial models cannot be improved,

the inspection method is considered unreliable, and an alternative inspection method should

be selected.

It is possible to decouple the problem to a more significant number of partial models, for

example, a damage model, material model, excitation model, etc. The advantage of the

decoupling procedure is that it is possible to switch any partial model and keep other partial

models without any modification to evaluate the influence of this change on the performance of

the inspection method. For example, many numerical models can be tested keeping the same

DOE, experimental data, and the damage indicator.

On the other hand, developing several damage models to represent a specific damage type can

lead to a coupling problem with the global numerical model of the structure. For example,

coupling a multidimensional damage numerical model to a unidimensional global numerical

model and vice versa.

215
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In the next section, the results obtained from the numerical and the experimental studies are

discussed to specify the limitations of the developed strategy and to introduce improvements

that may enhance the reliability of the studied inspection method.

7.2 Quality assessment: Limitation and improvement

7.2.1 Assessment procedure

The general purpose of the quality assessment in this work was not to develop the best model.

However, the goal was to provide knowledge about the relative quality between a currently used

model and a reference model which was assumed to be the best model. Moreover, this study

did not give evidence that there was a unique optimal model.

The assessment principle is based on decoupling a global model into several partial models and

evaluating each of these partial models at each step of the re-coupling procedure. An ideal

assessment procedure may be to decouple the global model into an infinite number of partial

models and then to assess each one before re-coupling them. Based on that, the ideal quality

of assessment method was represented by a circle with the unit radius. Each point of this

circle represents the maximum quality of a partial model. In this work, only the quality of the

four essential partial models were investigated: numerical models, the design of experiments,

measurements, and damage indicators. If the studied partial models are equally important,

then the circle can be divided into four equal quarters by placing the quality of the studied

partial models on the circle with an angle interval of 90◦. This quality representation helps

to compare different partial models and different inspection methods for detecting a specific

damage type.

7.2.2 Assessment results

The procedure described above was applied to the studied examples in this work. Table 7.1

presents the partial models that were switched to explore their influence on the reliability of

the inspection method. In the SDOF example, the excitation properties as a part of the DOE

model were evaluated using the sensitivity analysis to illustrate their influence on the studied

damage model, figure 3.14. The damage indicator was tested with and without considering

model updating.

In the case of the three-DOF frame structure, damage scenarios as a part of the numerical

model were investigated. Different excitation properties as a part of the DOE model were

tested.
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Table 7.1: An overview of the comparison of the studied partial model in each example

Example
Partial models

GM DOE g f

SDOF X X

3DOF X X

Frame X X

PVC X

Poles X X X

In case of the steel frame structure different DOE models including the excitation properties

(frequency and location), sensor number were evaluated in case of damage detection. Different

damping models were introduced in the damage indicator model to obtain their influence on

the reliability of the inspection method. In case of the PVC cantilever example, two numerical

models were developed to explore the changes in the reliability of the inspection method if

those models were chosen.

Experiments from identical physical models were used to investigate their influence on the

reliability of the inspection method. Two numerical models were developed to explore the

influence of the cable stiffness on the assessment procedure. Two test setups as a part of the

DOE model were evaluated.

Figure 7.1 illustrates the quality of the partial models of the SDOF system example represented

inside the ideal assessment circle. The SDOF system example can be the best and maybe the

only case where an ideal design of experiment can be obtained. In all other examples presented

in this work, it was not possible to reach more than QDOE ≥ 0.75 based on the optimal

DOE definition used in this work. The example pointed out that the reliability of the chosen

inspection method to detect the defined damage size depends on measurements. Therefore,

if the reliability of the inspection method should be improved, the quality of measurements

should be improved by conducting more experiments or using a better sensor quality, etc.

In real civil engineering structures, an ideal design of experiments may not be applicable as the

three degrees of freedom system studied in this work showed. As a result, more experiments

were needed to gain information about other parameters which are unrelated to the chosen

damage type but influenced the outputs significantly, figure 7.2.

The chosen DOE can be improved by performing more experiments or changing the type and

the properties of the excitations. Another solution is to design an inverse experiment that

considers damping ratios and masses as desired inputs and stiffness as undesired inputs. In this

case, it is possible to prove that the variation of the studied response is not due the variation of

damping ratios or the masses. As a result, the variation of the chosen response can be explained
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Figure 7.1: Partial models quality of the SDOF system example (red: with model updating,

blue: without model updating)

by the variation of the stiffness. For example, if [M ] and [C] are the mass and damping matrices

of the structure and [Ki] is the stiffness matrix for damage case i and [Ki+1] is the stiffness

matrix for damage case i+1, damage related to the stiffness changes θg = ∆[K] = [Ki+1]− [Ki]

can be detected as follows:

∀θgi , θgi+1 : θgi 6= θgj if [M ]|d(θgi ) = [M ]|d(θgi+1) and [C]|d(θgi ) = [C]|d(θgi+1) → [Ki] 6= [Ki+1]

(7.1)

The investigation introduced in eq. (7.1) can be improved by including the damage pattern

DP (θg) concept. If DP (∆[M ]) and DP (∆[C]) represent the response patterns due to the

change of mass and the response patterns due to the change of damping, respectively, it is

possible to write:

∀θgi , θgi+1 : θgi 6= θgi+1 if DP (θg) 6= DP (∆[M ]) and DP (θg) 6= DP (∆[C]) → [Ki] 6= [Ki+1] (7.2)

Eq. (7.2) can be coupled to eq. (3.15) to improve the design of experiments by finding the best

sensor location for damage detection and for preventing false alarm. If DP (∆θ) is the response

patterns due the variation of the input parameters which are not related to damage, {θ} \ θg,
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Figure 7.2: Partial models quality of the 3DOFs system example: red line is if damage was at

the top k1 or middle story k2 and blue line if damage was at the ground story k3

the DOE model can be improved as follows:

∀x ⊆ Ω : arg max
x

[QV (d(x), d̄(x)), sT (θg, d(x))], DP (θg) 6= DP (∆θ) (7.3)

In the third example- steel frame structure, it was meant to develop a numerical model

independently of the chosen DOE model. However, the results in table 5.9 indicate that QV

depends on the chosen DOE model which includes the sensor positions, sensors number and the

excitation properties, figure 7.3. Damage development is a critical point that was investigated

by introducing different damping models in the damage indicator model, section 5.1.5.

The relationship between GM and DOE can be used to improve the quality of the numerical

model GM for damage detection by applying eq. (3.14), eq. (3.15) and eq. (3.16) in section

3.4.1. In this case, the best excitation properties and sensor positions that lead to better POD

can be selected based on the results in table 5.9 and figure 5.28. For example, given that QV,th

and sTth are predefined threshold values for QV and sT , if only the sensors {uopt} ⊆ {u}, where

the structural response satisfies QV > QV,th = 0.6 and st(θg) > sTth > 0.0, were only chosen,

eq. (7.4), the quality of the numerical model for damage detection can be improved to the values

shown in table 7.2. Moreover, the results of the applied sensitivity analysis show that exciting

the structure in z direction (out of plan) can improve the probability of damage detection and
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reduce the false alarm.

∀{uopt} ⊆ {u} : QV (d(x), d̄(x)) > 0.6 ∩ sT (θg, d(x)) > 0 (7.4)

Table 7.2: Quality of the numerical model compared to the physical model for different DOE

given that d is the signal energy after applying eq. (7.4)

20 Hz y 20 Hz x 30 Hz y 30 Hz x 60 Hz y 60 Hz x 170 Hz y 170 Hz x

QV 0.78 0.81 0.83 0.82 0.76 0.81 0.95 0.61

The results obtained from the cantilever example in chapter 5, figure 7.4, and the reference

object (pole) in chapter 6, figure7.5, agree with the investigation results shown in figure 3.14

from the SDOF example. If the damage model includes only the stiffness of the cables, the

damage indicator obtained under an impulse excitation is not sensitive to damage, figure 5.69,

table 6.7. If the damping influence was included, the reliability of the inspection method

improved significantly, figures 5.70, 6.32 and 6.33.

The results from the pole example in chapter 6 show that if the cable damping was not activated

during the experiments, the damage would be detected late. This means if the model updating

results using experiments from a model GE,i gave larger damping constant Cd than a model

GE,j, damage was detected using model GE,i faster than using model GE,j, eq. (7.5). As a

result, it is possible to evaluate the quality of the experiments for detecting the studied damage

type based on the value Cd obtained from the posterior density functions. Also, the results

indicate that the asymmetry of the structure can influence the reliability of the inspection

method. Therefore, more investigation should be done to develop an appropriate asymmetry

model that leads to accurate inspection method assessment.

∀i, j : Cd|GE,i > Cd|GE,j ⇒ POD(θg|GE,i) > POD(θgj |GE,j) (7.5)

The reliability of the inspection methods used in this work for the experimental studies in

chapter 5 and 6 are based on the developed damage model including damping. If the damping

models introduced in damage indicator model behave differently, it is expected to obtained

different POD curves. Therefore, more experiments and studies to investigate the relationship

between damping and the damage indicator model are required.
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Figure 7.3: Partial models quality of the studied one span steel frame structure considering

different DOE models and damping models (red: no damping influence, blue:

linear damping model, green: slow damping changes (parabolic), orange: fast

damping model changes (parabolic) (covered by blue in some figures))



Conclusion 222

QV

QDOEQD

QM

0.121.00

0.76

0.00

0.98

0.3

Figure 7.4: Partial models quality of the PVC cantilever example: red line is if the numerical

model GM,1 was chosen and blue line is if the numerical model GM,2 was chosen

7.3 Conclusion

The potential relationship between the quality of the developed models and the reliability

of an inspection method for damage detection considering the influence of different types of

uncertainty can be concluded as follows:

GM : {θ}, θg → d(θg, {θ}): Low QV value ⇒ inaccurate assessment of the inspection method.

Damage will be detected faster or slower than in case of experiments.

DOE : {θ̂} ⊆ {θ} → F, [U ], · · · : Low QDOE value ⇒ false alarm due to the variation of the

input parameters which are not related to damage is expected. As a solution to avoid false

alarm, a unique damage pattern can be developed as a part of the DOE model.

gE : GE, DOE, γF , θ
g
E → d̄: Low QM value ⇒ measurements do not provide enough information

about damage. As a result, lower POD value is expected

f : θg → d(θg, ǫ): Low QD value ⇒ unreliable inspection method (low POD value or/and high

FPF value).
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(a) Test setup 1
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Figure 7.5: Partial models quality of the studied pole structure considering two test setups

and and 26 experimental model GE. The histograms show the distribution of the

26 pole samples based on QD. Red: the minimum values of the quality indexes,

blue: the maximum values of the quality indexes
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In the chosen vibration based inspection method, applying forced vibration tests by choosing

the appropriate excitation properties that lead to a structural response which is sensitive to

the studied damage can help to detect small damage sizes that global inspection method may

not detect. Moreover, likelihood functions and damage indicators based on the measured signal

energy showed promising results in the case of model updating and damage detection.

Performing primary modal tests and applying system identification to extract the modal

parameters of the system provide valuable information that can help to develop a high-quality

numerical model (highQV value). This leads to an accurate assessment of the studied inspection

method.



Chapter 8

Conclusion and Outlook

The current work proposed a model-based strategy to assess and improve the performance of

inspection methods for detecting a specific target damage size. The developed strategy is a

probabilistic framework which combines several general methods to obtain information about

the relationship between utilized models and the reliability of an inspection method.

To simplify the studied global problem, a decoupling procedure was followed to obtain several

models before coupling them again. The decoupling principle is based on classifying the studied

issues into different groups as follows:

1. The numerical model which contains the developed numerical models of a studied

structure and a chosen damage model.

2. The design of experiments which includes a procedure that should be followed to excite

a structure and acquire its response. The goal of a chosen design of the experiment is to

obtain sufficient information about the variation of a structural response due to damage

taking into account different types of uncertainty.

3. The measurements which should provide information to reduce uncertainty and to improve

the reliability of a studied inspection method.

4. The damage indicator which represents a relationship between damage size and a chosen

structural response of a studied structure.

The developed strategy is based on quantifying the quality of each partial model before

computing the reliability of a chosen inspection method. The assessment procedure provides

information that should be considered if the improvement of the performance of the chosen

inspection method is required. Indexes were used to represent the quality of models which were

coupled in a specific manner.
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First, after choosing a studied structure, the desired damage type, and a size that should be

detected, numerical models of the structure and damage should be developed, and an inspection

method should be selected. In the next step, the input parameters and output response should

be defined to develop a design of experiment to investigate the relationship between the variation

of the outputs and the variation of the input parameters. The quality of the numerical model

is quantified using an index QV which represents the agreement between the variation of the

response of the numerical model of the studied structural and the response of the experimental

model due to damage. Low QV value lead to inaccurate inspection method assessment.

The coupling between the numerical model and the chosen design of the experiment is

accomplished by assigning probabilistic models to the input parameters uncertainty and

selecting a sampling method to generate a sufficient number of samples that leads to obtaining

the statistical properties of the outputs uncertainty. The primary objective of a chosen design

of the experiment is to obtain a significant contribution of desired input parameters which help

to detect damage and prevent the influence of undesired input parameters which lead to a false

alarm. Therefore, a sensitivity analysis has to be performed to estimate the contribution of

each input parameter to each output. The quality of a chosen design of the experiment is

quantified using an index QDOE which is based on the results of the sensitivity analysis. If the

low QDOE value is obtained, a high probability of false alarm should be expected.

Measurements were obtained by performing tests on a physical model based on a chosen design

of the experiment. Measurements can provide additional information about the behavior of a

structure which can reduce the considered uncertainty. The index QM quantifies a quality of

measurements based on the uncertainty of desired input parameters before and after taking into

account measurements. Considering measurements inside the developed strategy was achieved

by using a Bayesian updating approach. Measurements were coupled to the system by assigning

a likelihood function to measurements and prior density functions to the input parameters. If

the low QM value is obtained, measurements do not provide enough information about the

critical parameters.

In the next step, a response of the updated numerical model due to damage covering a required

range of damage sizes is used to develop a damage size-damage indicator relationship. This

relationship is necessary to assess the reliability of a chosen inspection method using the

probability of damage detection and the probability of false alarm (false positive). A POD

method was developed in this work. The reliability of a chosen inspection method for detecting

a specific damage type and size is quantified by an index QD which combines both the POD

and PFA. The inspection method is not reliable if the low QD value is obtained.

Since the efficiency was considered, a Meta-modeling approach was followed to reduce the

computational effort and to reduce the complexity of the numerical models. Meta-models are

employed to replace complex models to achieve the following goals:
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1. Performing sensitivity analysis to obtain the contribution of the considered input

parameters to the chosen outputs and to select the important parameters;

2. Applying a model updating procedure to reduce the uncertainty of the important input

parameters.

The quality of the developed Meta-models was evaluated by checking the statistical require-

ments of the residuals. Many methods can be used to develop a Meta-model based on a studied

problem. In this work, Meta-models based on polynomial equations were used. The least

squares method was applied to obtain the regression coefficients. To improve the quality of

the developed Meta-models, a strategy was developed and presented to choose the appropriate

terms to obtain optimal or suboptimal Meta-models. Although the advantage of using the

Meta-models was significant if a sensitivity analysis and a model updating procedure were

performed, the quality of Meta-models should be evaluated by testing basic assumptions related

to the statistical properties of the residuals. Otherwise, using low-quality Meta-models may

lead to critical errors.

A vibration-based inspection method was applied to numerical and experimental examples to

illustrate the application of the developed framework. First, a single degree of freedom system

was employed to explain each step of the strategy in detail if a stiffness degradation damage

type should be detected. The analytical solution was used to calculate a structural response

to avoid a numerical error. As a result, the uncertainty of each step of the strategy can

be investigated without influencing the numerical error. Moreover, the influence of choosing a

specific excitation type, as a part of a chosen design of the experiment, on obtaining information

about desired input parameters was presented.

Second, three degrees of freedom system was used to illustrate the influence of the damage

location on the reliability of an inspection method. For this reason, damage at different locations

and multi-damage scenarios were studied. A principle of damage patterns was presented to

distinguish between the studied scenarios. Damage patterns were developed based on a chosen

response of the studied structure due to damage. The chosen inspection method is reliable if

the desired damage size was detected with a high probability of detection and low probability

of false alarm considering a unique damage patterns set for each scenario.

In the third example, damage in a single-span-one-story steel structure was investigated. The

frame was constructed using steel cubes elements connected to each other by bolts. Using

these cubes brings complexity to numerical models because of the non-uniform cross-section

and connection conditions between cubes. Damage was introduced to the experimental model

by replacing the cubes at both ends of the beam by 3D hinges. A shaker was connected to

the structure using magnets to produce harmonic excitations. The reliability of the inspection

method was investigated taking into account the influence of different damping models and DOE
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models which include the number of the sensors, the excitation frequency and the direction of

the excitation.

In the fourth example, a cantilever structure made from Polyvinyl chloride (PVC) was studied.

A particular damage type was modeled by applying a tension force using adjustable weights to

the structure. Two numerical models were developed to represent the structure and the chosen

damage. The goal of the example was to illustrate the influence of the developed models on

the reliability of the chosen inspection method.

In the fifth example, the performance of a chosen inspection method for damage detection in a

pole structure was evaluated considering 26 different experimental models and two test setups.

The results show that improving numerical models, choosing appropriate excitations which lead

to a structural response sensitive to damage, updating the uncertainty of essential parameters

and choosing appropriate damage indicators can improve the reliability of a chosen inspection

method by detecting a specified damage target earlier. These results of this study indicate that

there is a significant relationship between the quality of the studied partial models and the

reliability of the inspection method for damage detection.

An optimal DOE provided information about desired input parameters that help to detect

damage and prevented the influence of undesired input parameters that can lead to a false

alarm. However, if some undesired parameters influenced the selected outputs, then they

turn to be essential inputs and experiments should provide sufficient information about those

parameters otherwise high probability of false alarm should be expected.

The studied partial models may not always be independent. Choosing an optimal DOE

was based on defining the inputs and the outputs of the numerical model. The quality of

measurements is based on one side on the quality of the chosen DOE and in the other side

on measurements uncertainty due to white noise, environmental conditions, quality of the

sensors, etc. The quality of damage indicators was influenced by the updated uncertainty after

considering measurements. Moreover, the reliability of the chosen inspection methods is based

on the desired damage size that should be detected. The method provides a base to choose,

evaluate, and compare chosen partial models for a specific damage detection problem.

Many relevant topics should be considered in future studies. For example, the influence of

choosing different probabilistic models of uncertainty as coupling models on the quality of the

studied partial models and the reliability of inspection methods for damage detection requires

more investigation. Moreover, an efficient strategy should be developed to obtain optimal

or suboptimal designs of experiments for damage detection and model identification. The

decoupling and the assessment procedure used in this work provided the first step to decouple

the current studied partials models to finer partial models to improve the evaluation process.

Many other helpful methods which were not mentioned here can be appropriately included to

improve the quality of the assessment introduced by the current strategy. For example, the
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reliability of an inspection method was based on a chosen threshold to distinguish between noise

and damage signal. As a result, threshold optimization has to be a topic for future research as

a factor to improve the reliability of the chosen inspection method.

Defining prior probability density functions and extracting the dynamic properties from a

dynamic response of a studied structure require user experience in most cases. As a result,

uncertainty caused by a human decision should not be ignored for future studies.

The results show that a validation process should be developed. Comparing natural frequencies

and mode shapes was not sufficient to obtain a conclusion about the quality of the numerical

model. One possible solution is to use the concept of damage patterns developed in this work

to validate a model in case of damage detection.

Moreover, a strategy to improve the studied partial models should be developed. The strategy

can be based on performing a sensitivity analysis to obtain information about the most critical

partial model which has a significant influence on the reliability of the chosen inspection

method.
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Appendix A

MATLAB Implementations

A.1 Bayesian Model updating

% This file was created by Maher Deeb 2014

% This updating procedure is recommended if Meta-models are used

function[]=D Model Bayesian Updating MD2TL(mean x,Range x,Y exp,Std model meas)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Inputs:

% mean x: row vector the mean values of the input parameters [1xN {\theta}]

% Range x: row vector [1xN {\theta}, it was defined as

%Range x=max x-mean x=mean x-min x=(max x-min x)/2

%Y exp: [N {\bar{d}},N {test}] Matrix contains the measured structural

%response i=1:N {\bar{d}} at

%each test j=1:N {test}

%Std model meas:[N {\bar{d}},N {test}] Matrix contains the standard

%deviation of the total uncertainty= measurement uncertainty+uncertainty

%because of \theta variation + uncertainty due to using Meta-models

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% the outputs (posteriors) will be saved to a file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rpi=1; % Integer: the number of repeating the updating procedure.

%the goal is to be sure that the process is robust if similar posteriors

%were obtained.

while rpi<2

fprintf('\n ...Model Updating.... started..');

init error=1e+5;

d prev error=0;

241
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%double: error between the calculated and measured structural response.

% it is optional to use. I used it later to monitor the output of the

% Meta-models since Meta-model results can contain some errors

tic % start to calculate the computing time

Nx=2000; % Integer: define the number of samples that

%will be used at each updating step

% Nx should be large enough to obtain constant posteriors but caution

% with computing time and effort

par i=length(mean x);

% Integer: the number of parameters that should be updated

[x,pdf x]=prior dist(Nx,mean x,Range x,'unif');

% this function provide samples giving that

% the prior are obtained from uniform dist. functions.

%x and pdf x are matrices [Nx,N {\theta}]

% if other distribution is required then x, pdf x can be provided

% manually or using the function "sampling from Posterior"

xx1=x;

save('temp posterior','xx1','pdf x')

%temporary posteriors will be saved at each updating step

%when the next updating step starts, the updated parameters in the previous

%step will be taken into account by loading the file and sampling from it

%P(\theta {i+1}|\bar{d},\theta {i})

i121=0;

for i0=1:5 % number of loops of applying P(\theta {i+1}|\bar{d},\theta {i})

i main=1; %counter

i repeat=0;

% Logic value between 0 and 1: if 0 the next parameter will be updated

%if 1 the current parameter will be updated again by setting all

%other parameters to their initial distributions. The goal is to

%search for the most important parameter that reduce the error the

%most and update this parameter first. This procedure has no

%influence if a numerical model was used to update the parameters

%however, in case of using Meta-models, this procedure can lead to

%better results.

while i main<par i+1

k=0; % counter

load('temop posterior') % applying P(\theta {i+1}|\bar{d},\theta {i})

for i1=1:par i % start updating the parameter i1

x(:,i1)=sampling from Posterior(xx1(:,i1),pdf x(:,i1),Nx);

% This function provide Nx samples from any given

% distribution. In this work, it was used to sample from

% the computed posterior.

%Note: in this level any other sampling methods can be used

%like MCMC or similar but if the updating procedure takes long
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%time it could be interrupted because of license problems

%if someone else is using the same matlab tool box

for ij=1:Nx

pdf xxx(ij,i1)=pdf x(find(xx1(:,i1)<=x(ij,i1),1,'last'),i1);

% This is important for the next step when the

% likelihood of the parameter x {i1}

%at its value x i has to be calculated.

end

end

pdf x Pos(:,i main)=pdf x(:,i main);

% give the initial value of the posterior

for x i=mean x(i main)-0.5*Range x(i main):Range x(i main)/(Nx*1):...

mean x(i main)+0.5*Range x(i main)-Range x(i main)/(1*Nx)

%in this loop the likelihood will be calculated at each

%value x {i1}=x i inside the range [min x,max x]. Nx is

%important for the quality of the updated dist.

k=k+1;

x plot(k,i main)=x i; % this is only for ploting purpose later

%% prepare the matrices for calculating the likelihood at value x {i1}=x i

x a=x;

pdf x a=pdf xxx;

x a(:,i main)=ones(Nx,1)*x i;

if x i<min(x(:,i main)) | | x i>max(x(:,i main))

%% if x {i1}=x i out of the range [min x,max x],

%then the likelihood is 0 and no computation is necessary

pdf x a(:,i main)=ones(Nx,1).*0;

else

pdf x a(:,i main)=ones(Nx,1).*...

pdf x(find(xx1(:,i main)<=x i,1,'last')...

,i main);

end

L y x i=1;

% initial value of the product(P(\bar{d} |\theta)*P(\theta))

for ptheta=1:par i

%calculate prod.P(\theta)

L y x i=L y x i.*pdf x a(:,ptheta);

end

%%

if L y x i>0

y post model=zeros(Nx,length(Y exp(:,1)),length(Y exp(:,1)));

%initial value of the model output

for N test=1:length(Y exp(1,:)) %number of tests

for j=1:length(Y exp(:,1)) %number of the outputs

y post model(:,j,N test)=f(x a);

% introduce your model here. It is recommended
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% to use Meta-models otherwise it takes look

% time to be calculated

L y x i=L y x i.*(normpdf(Y exp(j,N test),...

y post model(:,j,N test),...

(Std model meas(j,N test).ˆ2).ˆ0.5));

%calculate the

%product(P(\bar{d} |\theta)*P(\theta)) based on

%a likelihood function obtained from normal

%dist. In general any function can be used

end

end

end

L y x(k,i main)=sum(L y x i);

% the final product(P(\bar{d} |\theta)*P(\theta)) at x i for

% different combinations of x\x i

end

pdf x Pos(:,i main)=L y x(:,i main)./sum(L y x(:,i main));

% get the normalized posterior

pdf x (:,i main)=pdf x Pos(:,i main);

xx1(:,i main)=x plot(:,i main);

clear L y x y post model1

i121=i121+1;

for i10=1:par i

x max lik(i0,i10)=sum(xx1(:,i10).*pdf x (:,i10));

%calculate the mean value from the posteriors

end

%% the updating procedure is finished.

%from here only the robustness of the

%Meta-models will be checked to ensure the

% quality of the updating results. This can be ignored if other

% the numerical model model is used for example.

for N test=1:length(Y exp(1,:))

for j=1:length(Y exp(:,1))

y post model1(j,N test)=f(x max lik);

% introduce your Meta-model here

end

% end

end

figure(999)

plot(i121,sum(sum((Y exp-y post model1).ˆ2)),'--o')

%plot the error ( this plot should show that the

%error converges to 0 otherwise large error

%due to using Meta-models should be expected)

hold on

%% a procedure to search for the most important

%parameter and accept\reject the posterior

%(important only in case of using Meta-models)
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if i main>0

if i0==0

if abs(sum(sum((Y exp-y post model1).ˆ2)))-...

init error<d prev error && i repeat==0

[x i,pdf x i]=prior dist(Nx,mean x,Range x,'unif');

xx1(:,1:i main)=x i(:,1:i main);

pdf x(:,1:i main)=pdf x i(:,1:i main);

if d prev error<0 | | i main>1

i main=i main-1;

i repeat=1;

end

d prev error=abs(sum(sum((Y exp-y post model1).ˆ2)))-init error;

save('temop posterior','xx1','pdf x')

else

save('temop posterior','xx1','pdf x')

i repeat=0;

init error=min(abs(sum(sum((Y exp-y post model1).ˆ2))),init error);

end

else

if (abs(sum(sum((Y exp-y post model1).ˆ2)))<prev error)

init error=abs(sum(sum((Y exp-y post model1).ˆ2)));

save('temop posterior','xx1','pdf x')

end

end

end

i main=i main+1;

end

if (init error<0.0001)

break

end

end

hold off

toc % to compute the calculation time

%% plot the posterior

load('temop posterior')

x plot=xx1;

pdf x Pos=pdf x;

for i main=1:par i

sorted data=sortrows([x plot(:,i main) pdf x Pos(:,i main)],1);

x sort(:,i main)=sorted data(:,1);

pdf x Pos(:,i main)=sorted data(:,2);

pdf x Pos mean i(mean i,1,i main)=...

x sort(find(pdf x Pos(:,i main)==...

max(pdf x Pos(:,i main)),1,'first'),i main);

pdf x Pos mean i(mean i,2,i main)=max(pdf x Pos(:,i main));

end
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Nx=length(pdf x Pos(:,1));

%% save the updating results

save(['Model Bayesian Updating results ' int2str(rpi)]...

,'x sort','pdf x Pos','x','pdf x','range x','x max lik')

for i main=1:par i

figure1=figure(i main+667);

set(figure1, 'Position', [0 0 840 700])

axes1 = axes('Parent',figure1,'FontSize',24,'FontWeight','bold');

plot(xx1(:,i main),pdf x(:,i main),'Parent',axes1,...

'LineWidth',2.5,'LineStyle','--','Color',[0 0 0]);

hold on

plot(x sort(:,i main),pdf x Pos(:,i main),'Parent',axes1,'LineWidth',2.5,...

'Color',[0.5 0.5 0.5]);

ylabel({['Density']},'FontWeight','bold','FontSize',30);

xlim([min(x sort(:,i main)) max(x sort(:,i main))])

ylim([0 inf])

end

fprintf('\n ...Model Updating.... done..');

rpi=rpi+1;

pause

close all

end

end

A.2 Sampling from a uniform distribution function

function[x,pdf x]=prior dist(Nx,mean x,Range x,dist perior)

par i=length(mean x);

samplesA=lhsdesign(Nx,par i,'criterion','correlation')-0.5;

x=zeros(Nx,par i);

for i=1:Nx

for j=1:length(mean x)

x(i,j) = mean x(j)+1*Range x(j)*samplesA(i,j);

end

end

pdf x=zeros(Nx,par i);

norm all=ones(par i,1);

for i=1:length(mean x)

if(strcmp(dist perior(i,:),'unif')==1)

pdf x(:,i) = unifpdf(x(:,i),mean x(i)-Range x(i)/2,mean x(i)+Range x(i)/2);

end

norm all(i)=sum(pdf x(:,i));

pdf x(:,i)=(pdf x(:,i)./norm all(i));

end
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end

A.3 Sampling from any distribution function using the

inverse method

function[X f,pdf f]=sampling from Posterior(x,pdf x,Nx)

%This method id called 'The Inversive Method' and it can be found easily in the literature

%"Drawing a Sample from a Given Distribution",Dhiren Ghosh and Andrew Vogt, Section on Survey

cdf x = cumsum(pdf x);

cdf x(1)=0;

cdf x(end)=1;

for i=1:Nx

U = rand(1,1);

X f(i,1) = x(sum(cdf x<=U));

pdf f(i,1)=pdf x(find(x<=X f(i,1),1,'last'));

end

end

A.4 Probability of detection

%This file was created by Maher Deeb 2014

%Probability of damage detection POD

function[]=POD basic method(Yd,damage size,damage pattern)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%inputs:

%Yd: is a 4 dimensions array which includes the structural response due

%damage.

%Yd(sample Number,test Number ,Number related to the

%size of the damage,DOF Number)

%damage pattern: =1 if the studied structural response increases by increasing

%damage. =-1 if the studied structural response decreases by increasing

%damage. = 0 if the studied structural response is not sensitive to damage

%damage size: is a vector contains the size of the studied damage which

%increases the from the minimum damage size to the maximum damage size

%with a certain interval

Nx=length(Yd(:,1,1,1));

%search for the threshold

for j=1:length(Yd(1,:,1,1))

for k=1:length(Yd(1,1,1,:))

if damage pattern(k,j)>0
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for i=1:Nx

% False alarm condition PFP<1/1000

if (length(find(Yd(:,j,1,k)>Yd(i,j,1,k)))/Nx<1/1000)

%selecting the the threshold that satisfy the PFP

%condition

Yc(k,j)=Yd(i,j,1,k);

break

end

end

elseif damage pattern(k,j)<0

for i=1:Nx

% False alarm condition PFP<1/1000

if (length(find(Yd(:,j,1,k)<Yd(i,j,1,k)))/Nx<1/1000)

%selecting the the threshold that satisfy the PFP

%condition

Yc(k,j)=Yd(i,j,1,k);

break

end

end

end

end

end

%Calculate the POD and POD 95*

%* In this work POD 95 is calculated assuming that the data are normally

%distributed However this is not always the case. This has no influence of

%the size of the sample is large where no difference between POD and POD 95

% is observed.

for damage size i=1:length(Yd(1,1,:,1))

POD(damage size,1)=1;

POD 95(damage size,1)=1;

for j=1:length(Yd(1,:,1,1))

for k=1:length(Yd(1,1,1,:))

if damage pattern(k,1)>0

POD(damage size,1)=POD(damage size,1).*...

(length(find(Yd(:,j,damage size,k)<=Yc(k,j)))/Nx);

POD 95(damage size,1)=POD 95(damage size,1).*...

(length(find(Yd(:,j,damage size,k)<=Yc(k,j)...

+1.645*std(Yd(:,j,damage size,k))./(Nxˆ0.5)))/Nx);

else

POD(damage size,1)=POD(damage size,1).*...

(length(find(Yd(:,j,damage size,k)>=Yc(k,j)))/Nx);

POD 95(damage size,1)=POD 95(damage size,1)...

.*(length(find(Yd(:,j,damage size,k)>=Yc(k,j)...

-1.645*std(Yd(:,j,damage size,k))./(Nxˆ0.5)))/Nx);

end

end

end
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end

POD=1-POD;

POD 95=1-POD 95;

%save the results

save('POD','damage size','POD','POD 95','damage pattern')

%Plot the POD and POD95

figure(1)

plot(damage size,POD)

hold on

plot(damage size,POD 95,'r')

hold off

end

A.5 Developing Meta-models and selecting their terms

%This file was created by Maher Deeb 2013

% developing Meta-models and optimizing their terms

function[chosen terms,beta linear,R2 linear,R2 normal,res i,cov res i]=...

A meta model generation(x,y,degree,interaction,N)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Inputs:

%x: a matrix [N sample,N {\theta}]. The columns refer to the number of the

%input parameters and the rows refer to the size of the samples.

%y: is a matrix [N sample,N {\bar{d}}]. The columns refer to the number of the

%outputs and the rows refer to the size of the samples.

%y=f(x) which is obtained from solving the numerical model N sample times

%degree: the maximum degree of the polynomial equation. if degree=2 then x

%and xˆ2 will be considered.

%interaction: the maximum degree of the terms interaction. e.g. if

%interaction=2, then the terms x1 x2 x3 x1x2 x1x3 x2x3 will be considered

%N: size of the sample

%outputs:

%chosen terms: is a matrix contains integers related to the term order

%beta linear: regression coefficients of each term

%R2 linear: if close to 1 then the assumption of the

%linearty between the terms and the outputs is correct (good Meta-model)

%R2 normal: if close to 1 then the residual is normally distributed (good Meta-model)

%cov res i: if close to 0 then the error is random (good Meta-model)

%res i: the residual

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%generate the terms based on the given maximum degree of the polynomial

x total=[x];
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for i=2:degree

x total=[x total x.ˆi];

end

m=0;

mul=ones(N,1);

N1=length(x total(1,:));

function[terms no]=get number of terms(N1,interaction)

terms no=0;

for i=1:interaction

terms no=terms no+factorial(N1)/(factorial(i)*factorial(N1-i));

end

end

function[combinations full total,terms]=get the used term...

(N1,interaction,N,x total)

combinations full total=zeros(N,get number of terms(N1,interaction));

%generate the interaction between the terms

terms=zeros(1,interaction);

for i=1:interaction

c = combnk(1:length(x total(1,:)),i);

for j=1:length(c(:,1))

m=m+1;

for k=1:length(c(1,:))

mul=mul.*x total(:,c(j,k));

terms(m,k)=c(j,k);

end

combinations full total(:,m)=mul;

mul=ones(N,1);

end

end

end

[combinations full total,terms]=get the used term(N1,interaction,N,x total);

%calculate the correlation between each term and the output data

clearvars -except combinations full total terms N y R2 linear tol ...

R2 normal tol cov res i tol

k=0;

for i=1:length(combinations full total(1,:))

k=k+1;

clc

step 1=100-round(100*(length(combinations full total(1,:))...

-k)/length(combinations full total(1,:)));

combinations full=combinations full total(:,k);

chosen terms=terms(k,:);

X1 linear = [ones(N,1) combinations full];

[beta linear] = regress(y,X1 linear);

beta linear mult=prod(beta linear);

if (beta linear mult==0)
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combinations full total(:,k)=[];

terms(k,:)=[];

k=k-1;

else

y linear = beta linear(1)*ones(N,1);

for ii=1:length(combinations full(1,:))

y linear = y linear + beta linear(ii+1)*combinations full(1:N,ii);

end

R2 linear(k) = (corr(y,y linear))ˆ2;

y linear=[];

end

end

% sort the terms based on the correlation. First term show the maximum

% correlation

combinations full total sorted=[R2 linear',combinations full total'];

combinations full total sorted1=(sortrows(combinations full total sorted,-1))';

combinations full total sorted1(1,:)=[];

terms sorted=[R2 linear',terms];

terms sorted1=sortrows(terms sorted,-1);

terms sorted1(:,1)=[];

combinations full total=combinations full total sorted1;

terms=terms sorted1;

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

clearvars -except combinations full total terms N y...

R2 linear tol R2 normal tol cov res i tol

k=0;

%start to build the model: combine the terms and ignore the terms that do

%not improve the Meta-model

R2 linear=[];

for i=1:length(combinations full total(1,:))

clc

step 2=100-round(100*(length(combinations full total(1,:))-k)...

/length(combinations full total(1,:)))

k=k+1;

combinations full=combinations full total(:,1:k);

chosen terms=terms(1:k,:);

X1 linear = [ones(N,1) combinations full];

[beta linear,conf Ints,res i,rint,stats] = regress(y,X1 linear);

beta linear mult=prod(beta linear);

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

%the last step if still the last term does not work

if (k==length(combinations full total(1,:)) && beta linear mult==0)

combinations full=combinations full total(:,1:k-1);

chosen terms=terms(1:k-1,:);

X1 linear = [ones(N,1) combinations full];
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[beta linear,conf Ints,res i,rint,stats] = regress(y,X1 linear);

y linear 1 = beta linear(1)*ones(N,1);

for ii=1:length(combinations full(1,:))

y linear 1 = y linear 1 + beta linear(ii+1)*combinations full(1:N,ii);

end

% cross validation of the error (residual)

res standarized=res i;

res standarized=sort(res standarized);

res standarized domy=randn(N,1);

res standarized domy=sort(res standarized domy);

% is the error normal distributed

R2 normal = (corr(res standarized,res standarized domy))ˆ2;

%check the linearty of the data

R2 linear = (corr(y,y linear))ˆ2

%check if the error is random

cov res i=cov(res i(2:end),res i(1:end-1));

end

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

y linear 1 = beta linear(1)*ones(N,1);

for ii=1:length(combinations full(1,:))

y linear 1 = y linear 1 + beta linear(ii+1)*combinations full(1:N,ii);

end

R2 linear help(k) = (corr(y,y linear 1))ˆ2;

if (beta linear mult==0 | | R2 linear help(max(k-1,1))>R2 linear help(k))

combinations full total(:,k)=[];

terms(k,:)=[];

k=k-1;

else

y linear = beta linear(1)*ones(N,1);

for ii=1:length(combinations full(1,:))

y linear = y linear + beta linear(ii+1)*combinations full(1:N,ii);

end

% cross validation of the error (residual)

res standarized=res i;

res standarized=sort(res standarized);

res standarized domy=randn(N,1);

res standarized domy=sort(res standarized domy);

% is the error normal distributed (R2 normal=1 then yes)

R2 normal = (corr(res standarized,res standarized domy))ˆ2;

%check the linearty of the data (R2 linear=1

%then the assumption is correct)

R2 linear = (corr(y,y linear))ˆ2

%check if the error is random (cov res i=0 then yes)

cov res i=cov(res i(2:end),res i(1:end-1));

end

end

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

end



Appendix B

Finite Element models (LS DYNA

reduced input)

B.1 Steel frame structure

$# LS-DYNA Keyword file created by LS-PrePost(R) V4.3 (Beta) - 27Jul2015(09:00)

$# Created on Nov-02-2015 (12:06:48)

*KEYWORD MEMORY=500000000 NCPU=1

*TITLE

$# title

LS-DYNA keyword deck by LS-PrePost

*CONTROL_IMPLICIT_DYNAMICS

$# imass gamma beta tdybir tdydth tdybur irate

1 0.5 0.25 0.01.00000E281.00000E28 0

*CONTROL_IMPLICIT_GENERAL

$# imflag dt0 imform nsbs igs cnstn form zero_v

1 0.0019531 2 1 2 0 0 0

*CONTROL_TERMINATION

$# endtim endcyc dtmin endeng endmas

5.0 0 0.0 0.01.000000E8

*DATABASE_NODOUT

$# dt binary lcur ioopt option1 option2

0.0019531 0 0 1 0.0 0

*DATABASE_HISTORY_NODE_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

269 0 0 0 0 0 0 0

*BOUNDARY_SPC_SET

254
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$# nsid cid dofx dofy dofz dofrx dofry dofrz

196 0 1 1 1 1 1 1

*LOAD_NODE_POINT

$# nid dof lcid sf cid m1 m2 m3

13730 2 1 100.0 0 0 0 0

*PART

$# title

LSHELL1

$# pid secid mid eosid hgid grav adpopt tmid

1 2 2 0 0 0 0 0

*SECTION_SHELL_TITLE

hinge plate

$# secid elform shrf nip propt qr/irid icomp setyp

2 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

25.0 25.0 25.0 25.0 0.0 0.0 0.0 0

*MAT_ELASTIC_TITLE

hinge

$# mid ro e pr da db not used

27.83000E-9 177000.00.30000001 0.0 0.0 0

*PART

$# title

LSHELL2

$# pid secid mid eosid hgid grav adpopt tmid

2 2 2 0 0 0 0 0

*PART

$# title

4

$# pid secid mid eosid hgid grav adpopt tmid

3 4 4 0 0 0 0 0

*SECTION_SHELL_TITLE

stiffers

$# secid elform shrf nip propt qr/irid icomp setyp

4 2 1.0 4 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

6.0 6.0 6.0 6.0 0.0 0.0 0.0 0

*MAT_ELASTIC_TITLE

stiffers

$# mid ro e pr da db not used
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47.83000E-9 177000.00.30000001 0.0 0.0 0

*PART

$# title

4

$# pid secid mid eosid hgid grav adpopt tmid

4 4 4 0 0 0 0 0

*PART

$# title

4

$# pid secid mid eosid hgid grav adpopt tmid

5 4 4 0 0 0 0 0

*PART

$# title

4

$# pid secid mid eosid hgid grav adpopt tmid

6 4 4 0 0 0 0 0

*PART

$# title

LSHELL7

$# pid secid mid eosid hgid grav adpopt tmid

7 1 1 0 0 0 0 0

*SECTION_SHELL_TITLE

cube

$# secid elform shrf nip propt qr/irid icomp setyp

1 2 1.0 4 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

6.0 6.0 6.0 6.0 0.0 0.0 0.0 0

*MAT_ELASTIC_TITLE

steel_cube

$# mid ro e pr da db not used

17.83000E-9 179000.00.30000001 0.0 0.0 0

*PART

$# title

LSHELL8

$# pid secid mid eosid hgid grav adpopt tmid

8 1 1 0 0 0 0 0

*PART

$# title

LSHELL9



Steel frame structure 257

$# pid secid mid eosid hgid grav adpopt tmid

9 1 1 0 0 0 0 0

*PART

$# title

LSHELL10

$# pid secid mid eosid hgid grav adpopt tmid

10 1 1 0 0 0 0 0

*PART

$# title

LSHELL11

$# pid secid mid eosid hgid grav adpopt tmid

11 1 1 0 0 0 0 0

*PART

$# title

LSHELL12

$# pid secid mid eosid hgid grav adpopt tmid

12 1 1 0 0 0 0 0

*PART

$# title

LSHELL13

$# pid secid mid eosid hgid grav adpopt tmid

13 1 1 0 0 0 0 0

*PART

$# title

LSHELL14

$# pid secid mid eosid hgid grav adpopt tmid

14 1 1 0 0 0 0 0

*PART

$# title

LSHELL15

$# pid secid mid eosid hgid grav adpopt tmid

15 1 1 0 0 0 0 0

*PART

$# title

LSHELL16

$# pid secid mid eosid hgid grav adpopt tmid

16 1 1 0 0 0 0 0

*PART

$# title
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LSHELL17

$# pid secid mid eosid hgid grav adpopt tmid

17 1 1 0 0 0 0 0

*PART

$# title

LSHELL18

$# pid secid mid eosid hgid grav adpopt tmid

18 1 1 0 0 0 0 0

*PART

$# title

LSHELL19

$# pid secid mid eosid hgid grav adpopt tmid

19 1 1 0 0 0 0 0

*PART

$# title

LSHELL20

$# pid secid mid eosid hgid grav adpopt tmid

20 1 1 0 0 0 0 0

*PART

$# title

LSHELL21

$# pid secid mid eosid hgid grav adpopt tmid

21 1 1 0 0 0 0 0

*PART

$# title

LSHELL22

$# pid secid mid eosid hgid grav adpopt tmid

22 1 1 0 0 0 0 0

*PART

$# title

LSHELL23

$# pid secid mid eosid hgid grav adpopt tmid

23 1 1 0 0 0 0 0

*PART

$# title

LSHELL24

$# pid secid mid eosid hgid grav adpopt tmid

24 1 1 0 0 0 0 0

*PART
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$# title

LSHELL25

$# pid secid mid eosid hgid grav adpopt tmid

25 1 1 0 0 0 0 0

*PART

$# title

LSHELL26

$# pid secid mid eosid hgid grav adpopt tmid

26 1 1 0 0 0 0 0

*PART

$# title

LSHELL27

$# pid secid mid eosid hgid grav adpopt tmid

27 1 1 0 0 0 0 0

*PART

$# title

LSHELL28

$# pid secid mid eosid hgid grav adpopt tmid

28 1 1 0 0 0 0 0

*PART

$# title

LSHELL29

$# pid secid mid eosid hgid grav adpopt tmid

29 1 1 0 0 0 0 0

*PART

$# title

LSHELL30

$# pid secid mid eosid hgid grav adpopt tmid

30 1 1 0 0 0 0 0

*PART

$# title

LSHELL31

$# pid secid mid eosid hgid grav adpopt tmid

31 1 1 0 0 0 0 0

*PART

$# title

LSHELL32

$# pid secid mid eosid hgid grav adpopt tmid

32 1 1 0 0 0 0 0
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*PART

$# title

LSHELL33

$# pid secid mid eosid hgid grav adpopt tmid

33 1 1 0 0 0 0 0

*PART

$# title

LSHELL34

$# pid secid mid eosid hgid grav adpopt tmid

34 1 1 0 0 0 0 0

*PART

$# title

LSHELL35

$# pid secid mid eosid hgid grav adpopt tmid

35 1 1 0 0 0 0 0

*PART

$# title

LSHELL36

$# pid secid mid eosid hgid grav adpopt tmid

36 1 1 0 0 0 0 0

*PART

$# title

LSHELL37

$# pid secid mid eosid hgid grav adpopt tmid

37 1 1 0 0 0 0 0

*PART

$# title

LSHELL38

$# pid secid mid eosid hgid grav adpopt tmid

38 1 1 0 0 0 0 0

*PART

$# title

LSHELL39

$# pid secid mid eosid hgid grav adpopt tmid

39 1 1 0 0 0 0 0

*PART

$# title

LSHELL40

$# pid secid mid eosid hgid grav adpopt tmid
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40 1 1 0 0 0 0 0

*PART

$# title

LSHELL41

$# pid secid mid eosid hgid grav adpopt tmid

41 1 1 0 0 0 0 0

*PART

$# title

LSHELL42

$# pid secid mid eosid hgid grav adpopt tmid

42 1 1 0 0 0 0 0

*PART

$# title

LSHELL43

$# pid secid mid eosid hgid grav adpopt tmid

43 1 1 0 0 0 0 0

*PART

$# title

LSHELL44

$# pid secid mid eosid hgid grav adpopt tmid

44 1 1 0 0 0 0 0

*PART

$# title

LSHELL45

$# pid secid mid eosid hgid grav adpopt tmid

45 1 1 0 0 0 0 0

*PART

$# title

LSHELL46

$# pid secid mid eosid hgid grav adpopt tmid

46 1 1 0 0 0 0 0

*PART

$# title

LSHELL47

$# pid secid mid eosid hgid grav adpopt tmid

47 1 1 0 0 0 0 0

*PART

$# title

LSHELL48
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$# pid secid mid eosid hgid grav adpopt tmid

48 1 1 0 0 0 0 0

*PART

$# title

LSHELL49

$# pid secid mid eosid hgid grav adpopt tmid

49 1 1 0 0 0 0 0

*PART

$# title

LSHELL50

$# pid secid mid eosid hgid grav adpopt tmid

50 1 1 0 0 0 0 0

*PART

$# title

LSHELL51

$# pid secid mid eosid hgid grav adpopt tmid

51 1 1 0 0 0 0 0

*PART

$# title

LSHELL52

$# pid secid mid eosid hgid grav adpopt tmid

52 1 1 0 0 0 0 0

*PART

$# title

LSHELL53

$# pid secid mid eosid hgid grav adpopt tmid

53 1 1 0 0 0 0 0

*PART

$# title

LSHELL54

$# pid secid mid eosid hgid grav adpopt tmid

54 1 1 0 0 0 0 0

*PART

$# title

LSHELL55

$# pid secid mid eosid hgid grav adpopt tmid

55 1 1 0 0 0 0 0

*PART

$# title
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LSHELL56

$# pid secid mid eosid hgid grav adpopt tmid

56 1 1 0 0 0 0 0

*PART

$# title

LSHELL57

$# pid secid mid eosid hgid grav adpopt tmid

57 1 1 0 0 0 0 0

*PART

$# title

LSHELL58

$# pid secid mid eosid hgid grav adpopt tmid

58 1 1 0 0 0 0 0

*PART

$# title

LSHELL59

$# pid secid mid eosid hgid grav adpopt tmid

59 1 1 0 0 0 0 0

*PART

$# title

LSHELL60

$# pid secid mid eosid hgid grav adpopt tmid

60 1 1 0 0 0 0 0

*PART

$# title

LSHELL61

$# pid secid mid eosid hgid grav adpopt tmid

61 1 1 0 0 0 0 0

*PART

$# title

LSHELL62

$# pid secid mid eosid hgid grav adpopt tmid

62 1 1 0 0 0 0 0

*PART

$# title

LSHELL63

$# pid secid mid eosid hgid grav adpopt tmid

63 1 1 0 0 0 0 0

*PART
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$# title

LSHELL64

$# pid secid mid eosid hgid grav adpopt tmid

64 1 1 0 0 0 0 0

*PART

$# title

LSHELL65

$# pid secid mid eosid hgid grav adpopt tmid

65 1 1 0 0 0 0 0

*PART

$# title

LSHELL66

$# pid secid mid eosid hgid grav adpopt tmid

66 1 1 0 0 0 0 0

*PART

$# title

Beam67

$# pid secid mid eosid hgid grav adpopt tmid

67 3 3 0 0 0 0 0

*SECTION_BEAM_TITLE

shaker

$# secid elform shrf qr/irid cst scoor nsm

3 1 1.0 2 0 0.0 0.0

$# ts1 ts2 tt1 tt2 nsloc ntloc

1.0 1.0 1.0 1.0 0.0 0.0

*MAT_RIGID_TITLE

shaker

$# mid ro e pr n couple m alias

31.0000E-15 227000.00.30000001 0.0 0.0 0.0

$# cmo con1 con2

0.0 0 0

$#lco or a1 a2 a3 v1 v2 v3

0.0 0.0 0.0 0.0 0.0 0.0

*PART

$# title

stiffers1

$# pid secid mid eosid hgid grav adpopt tmid

68 4 4 0 0 0 0 0

*PART
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$# title

stiffer_2

$# pid secid mid eosid hgid grav adpopt tmid

69 4 5 0 0 0 0 0

*MAT_ELASTIC_TITLE

stiffers_in_case 2

$# mid ro e pr da db not used

57.83000E-9 177000.00.30000001 0.0 0.0 0

*PART

$# title

stiffer_3

$# pid secid mid eosid hgid grav adpopt tmid

70 4 4 0 0 0 0 0

*PART

$# title

Stiffer_4

$# pid secid mid eosid hgid grav adpopt tmid

71 4 5 0 0 0 0 0

*PART

$# title

hinge_2_1

$# pid secid mid eosid hgid grav adpopt tmid

72 2 2 0 0 0 0 0

*PART

$# title

hinge_2_1

$# pid secid mid eosid hgid grav adpopt tmid

73 2 2 0 0 0 0 0

*PART

$# title

$# pid secid mid eosid hgid grav adpopt tmid

74 1 1 0 0 0 0 0

*PART

$# title

$# pid secid mid eosid hgid grav adpopt tmid

75 1 1 0 0 0 0 0

*DEFINE_CURVE
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$# lcid sidr sfa sfo offa offo dattyp lcint

1 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

*SET_PART_LIST

$# sid da1 da2 da3 da4 solver

1 0.0 0.0 0.0 0.0MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 2 3 4 5 6 9 10

11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42

43 44 46 49 50 51 52 53

54 55 56 57 58 59 60 61

62 63 64 65 66 67 0 0

*CONSTRAINED_NODE_SET

$# nsid dof tf

1 71.00000E20

*DAMPING_GLOBAL

$# lcid valdmp stx sty stz srx sry srz

0 0.4587 0.0 0.0 0.0 0.0 0.0 0.0

*DAMPING_PART_STIFFNESS_SET

$# psid coef

13.36213E-6

*ELEMENT_SHELL

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

*ELEMENT_BEAM

$# eid pid n1 n2 n3 rt1 rr1 rt2 rr2 local

72127 67 13730 82565 11693 0 0 0 0 2

*ELEMENT_MASS

$# eid nid mass pid

82565 13730 0.0031 0

*NODE

$# nid x y z tc rc

*END
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B.2 Cantilever PVC with cables

$# LS-DYNA Keyword file created by LS-PrePost(R) V4.3 (Beta) - 27Jul2015(09:00)

$# Created on Dec-02-2015 (16:58:09)

*KEYWORD MEMORY=500000000 NCPU=1

*PARAMETER

$# prmr1 val1 prmr2 val2 prmr3 val3 prmr4 val4

R par_1 6

R par_2 4

R par_3 3000

R par_4 4000

R par_5 -10

R par_6 5

R par_7 5

*TITLE

$# title

LS-DYNA keyword deck by LS-PrePost

*CONTROL_IMPLICIT_DYNAMICS

$# imass gamma beta tdybir tdydth tdybur irate

1 0.5 0.25 0.01.00000E281.00000E28 0

*CONTROL_IMPLICIT_GENERAL

$# imflag dt0 imform nsbs igs cnstn form zero_v

02.44100E-4 2 1 1 0 0 0

*CONTROL_TERMINATION

$# endtim endcyc dtmin endeng endmas

9.0 0 0.0 0.01.000000E8

*DATABASE_NODOUT

$# dt binary lcur ioopt option1 option2

2.44141E-4 1 0 1 0.0 0

*DATABASE_BINARY_D3PLOT

$# dt lcdt beam npltc psetid

0.01 0 0 0 0

$# ioopt

0

*DATABASE_HISTORY_NODE_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

7 0 0 0 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz
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1 0 1 1 1 1 1 1

*SET_NODE_LIST_TITLE

NODESET(SPC) 1

$# sid da1 da2 da3 da4 solver

1 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1 3 4 5 6 7 8 9

10 11 12 13 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

4 1 0 1 1 0 0 0

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

4 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1228 0 0 0 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

5 2 0 1 1 0 0 0

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

5 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1227 0 0 0 0 0 0 0

*LOAD_NODE_POINT

$# nid dof lcid sf cid m1 m2 m3

1228 1 1&par_1 1 0 0 0

1227 1 1&par_2 2 0 0 0

722 2 2&par_5 0 0 0 0

1197 1 2&par_6 0 0 0 0

*PART

$# title

LSHELL1

$# pid secid mid eosid hgid grav adpopt tmid

1 1 4 0 0 0 0 0

*SECTION_SHELL_TITLE

PVC

$# secid elform shrf nip propt qr/irid icomp setyp

1 2 1.0 5 1.0 0 0 1
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$# t1 t2 t3 t4 nloc marea idof edgset

3.2 3.2 3.2 3.2 0.0 0.0 0.0 0

*MAT_ELASTIC_TITLE

PVC_half_pipe

$# mid ro e pr da db not used

41.39000E-9&par_4 0.40000001 0.0 0.0 0

*PART

$# title

cable_right

$# pid secid mid eosid hgid grav adpopt tmid

2 2 3 0 0 0 0 0

*SECTION_BEAM_TITLE

rubber

$# secid elform shrf qr/irid cst scoor nsm

2 6 1.0 2 0 0.0 0.0

$# vol iner cid ca offset rrcon srcon trcon

100.0 0.0 0 20.0 0.0 0.0 0.0 0.0

*MAT_CABLE_DISCRETE_BEAM_TITLE

rubber_right

$# mid ro e lcid f0 tmaxf0 tramp iread

31.10000E-9&par_7 0 0.0 0.0 0.0 0

*PART

$# title

half_pipe

$# pid secid mid eosid hgid grav adpopt tmid

3 1 1 0 0 0 0 0

*MAT_ELASTIC_TITLE

PVC

$# mid ro e pr da db not used

11.39000E-9&par_3 0.40000001 0.0 0.0 0

*PART

$# title

cable_left

$# pid secid mid eosid hgid grav adpopt tmid

4 2 5 0 0 0 0 0

*MAT_CABLE_DISCRETE_BEAM_TITLE

rubber_left

$# mid ro e lcid f0 tmaxf0 tramp iread

51.10000E-9&par_7 0 0.0 0.0 0.0 0
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*MAT_ELASTIC_TITLE

rubber_not_used

$# mid ro e pr da db not used

21.10000E-9 500.00.49000001 0.0 0.0 0

*DEFINE_COORDINATE_SYSTEM_TITLE

cable_direction

$# cid xo yo zo xl yl zl

1-53.399685-0.1832911 2970.4487 -1000.0 0.0 4200.0

$# xp yp zp

-1000.0 0.0 3200.0

*DEFINE_COORDINATE_SYSTEM_TITLE

cable_direction_2

$# cid xo yo zo xl yl zl

2 53.4000026.5396E-15 2970.0 1000.0 0.0 4200.0

$# xp yp zp

1000.0 0.0 3200.0

*DEFINE_CURVE

$# lcid sidr sfa sfo offa offo dattyp lcint

1 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

0.0 0.0

1.0 1.0

10.0 1.0

*DEFINE_CURVE

$# lcid sidr sfa sfo offa offo dattyp lcint

2 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

2.0 0.0

2.00024414 0.46030399

2.00048828 0.835998

2.00073242 1.19890499

2.00097656 1.53562903

2.0012207 1.832165

2.00146484 2.0726819

2.00170898 2.24561095

2.00195313 2.30832791

2.00219727 2.26083398

2.00244141 2.128093

2.00268555 1.93994105
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2.00292969 1.726825

2.00317383 1.52345097

2.00341797 1.32494795

2.00366211 1.15323699

2.00390625 0.98761499

2.00415039 0.82747298

2.00439453 0.65515298

2.00463867 0.50962502

2.00488281 0.37505701

2.00512695 0.255712

2.00537109 0.0

2.00561523 0.0

2.00585938 0.0

*DEFINE_CURVE_TITLE

damping

$# lcid sidr sfa sfo offa offo dattyp lcint

3 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

0.0 50.0

2.0 50.0

2.00001001 1.20000005

10.0 1.20000005

*SET_NODE_LIST_TITLE

NODESET(SPC) 2

$# sid da1 da2 da3 da4 solver

2 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1228 1227 0 0 0 0 0 0

*SET_NODE_LIST_TITLE

NODESET(SPC) 3

$# sid da1 da2 da3 da4 solver

3 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1228 1227 0 0 0 0 0 0

*SET_NODE_LIST_TITLE

NODESET(SPC) 6

$# sid da1 da2 da3 da4 solver

6 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8
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1230 1229 0 0 0 0 0 0

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

7 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

236 690 724 755 721 0 0 0

*SET_PART_LIST

$# sid da1 da2 da3 da4 solver

1 0.0 0.0 0.0 0.0MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 2 0 0 0 0 0 0

*DAMPING_GLOBAL

$# lcid valdmp stx sty stz srx sry srz

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*DAMPING_PART_STIFFNESS

$# pid coef

11.30000E-5

*ELEMENT_SHELL

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

*ELEMENT_BEAM

$# eid pid n1 n2 n3 rt1 rr1 rt2 rr2 local

1117 2 246 1228 5 0 0 0 0 2

1118 4 126 1227 5 0 0 0 0 2

*ELEMENT_MASS

$# eid nid mass pid

1111 721 2.100000e-004 1

1112 755 2.100000e-004 1

1113 724 2.100000e-004 1

1114 690 2.100000e-004 1

1115 236 2.100000e-004 1

1116 722 2.100000e-004 1

*NODE

$# nid x y z tc rc

*END
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B.3 Cantilever PVC with dampers

$# LS-DYNA Keyword file created by LS-PrePost(R) V4.3 (Beta) - 27Jul2015(09:00)

$# Created on Dec-03-2015 (15:03:53)

*KEYWORD MEMORY=500000000 NCPU=1

*PARAMETER

$# prmr1 val1 prmr2 val2 prmr3 val3 prmr4 val4

R par_1 6

R par_2 4

R par_3 3000

R par_4 4000

R par_5 1

R par_6 1

R par_7 1

R par_8 1

R par_9 1

R par_10 1

R par_11 1

R par_12 1

*TITLE

$# title

LS-DYNA keyword deck by LS-PrePost

*CONTROL_IMPLICIT_DYNAMICS

$# imass gamma beta tdybir tdydth tdybur irate

1 0.5 0.25 0.01.00000E281.00000E28 0

*CONTROL_IMPLICIT_GENERAL

$# imflag dt0 imform nsbs igs cnstn form zero_v

02.44100E-4 2 1 1 0 0 0

*CONTROL_TERMINATION

$# endtim endcyc dtmin endeng endmas

9.0 0 0.0 0.01.000000E8

*CONTROL_TIMESTEP

$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.00.89999998 0 0.0 0.0 0 0 0

$# dt2msf dt2mslc imscl unused unused rmscl

0.0 0 0 0.0

*DATABASE_NODOUT

$# dt binary lcur ioopt option1 option2

2.44141E-4 1 0 1 0.0 0
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*DATABASE_BINARY_D3PLOT

$# dt lcdt beam npltc psetid

0.01 0 0 0 0

$# ioopt

0

*DATABASE_HISTORY_NODE_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

7 0 0 0 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

1 0 1 1 1 1 1 1

*SET_NODE_LIST_TITLE

NODESET(SPC) 1

$# sid da1 da2 da3 da4 solver

1 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1 3 4 5 6 7 8 9

10 11 12 13 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

9 0 1 1 1 1 1 1

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

9 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1236 1235 1234 1233 0 0 0 0

*LOAD_NODE_POINT

$# nid dof lcid sf cid m1 m2 m3

246 1 1&par_1 0 0 0 0

126 1 1&par_2 0 0 0 0

722 2 2&par_5 0 0 0 0

1197 1 2&par_6 0 0 0 0

246 3 1&par_11 0 0 0 0

126 3 1&par_12 0 0 0 0

*PART

$# title

LSHELL1

$# pid secid mid eosid hgid grav adpopt tmid

1 1 4 0 0 0 0 0
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*SECTION_SHELL_TITLE

PVC

$# secid elform shrf nip propt qr/irid icomp setyp

1 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

3.2 3.2 3.2 3.2 0.0 0.0 0.0 0

*MAT_ELASTIC_TITLE

PVC_half_pipe

$# mid ro e pr da db not used

41.39000E-9&par_4 0.40000001 0.0 0.0 0

*PART

$# title

cable_right

$# pid secid mid eosid hgid grav adpopt tmid

2 2 3 0 0 0 0 0

*SECTION_BEAM_TITLE

rubber

$# secid elform shrf qr/irid cst scoor nsm

2 6 1.0 2 0 0.0 0.0

$# vol iner cid ca offset rrcon srcon trcon

100.0 0.0 0 20.0 0.0 0.0 0.0 0.0

*MAT_CABLE_DISCRETE_BEAM_TITLE

rubber_right

$# mid ro e lcid f0 tmaxf0 tramp iread

31.10000E-9 5.0 0 0.0 0.0 0.0 0

*PART

$# title

half_pipe

$# pid secid mid eosid hgid grav adpopt tmid

3 1 1 0 0 0 0 0

*MAT_ELASTIC_TITLE

PVC

$# mid ro e pr da db not used

11.39000E-9&par_3 0.40000001 0.0 0.0 0

*PART

$# title

cable_left

$# pid secid mid eosid hgid grav adpopt tmid

4 2 5 0 0 0 0 0
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*MAT_CABLE_DISCRETE_BEAM_TITLE

rubber_left

$# mid ro e lcid f0 tmaxf0 tramp iread

51.10000E-9 5.0 0 0.0 0.0 0.0 0

*PART

$# title

spring_x

$# pid secid mid eosid hgid grav adpopt tmid

5 5 8 0 0 0 0 0

*SECTION_DISCRETE_TITLE

spring

$# secid dro kd v0 cl fd

5 0 0.0 0.0 0.0 0.0

$# cdl tdl

0.0 0.0

*MAT_SPRING_ELASTIC_TITLE

spring__x

$# mid k

8 10.0

*PART

$# title

spring_y

$# pid secid mid eosid hgid grav adpopt tmid

6 5 9 0 0 0 0 0

*MAT_SPRING_ELASTIC_TITLE

Spring_y

$# mid k

9 5.0

*PART

$# title

damping_x

$# pid secid mid eosid hgid grav adpopt tmid

7 3 6 0 0 0 0 0

*SECTION_DISCRETE_TITLE

Damper_1

$# secid dro kd v0 cl fd

3 0 0.0 0.0 0.0 0.0

$# cdl tdl

0.0 0.0
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*MAT_DAMPER_VISCOUS_TITLE

Damper_x_1

$# mid dc

6 &par_7

*PART

$# title

Damping_y

$# pid secid mid eosid hgid grav adpopt tmid

8 3 7 0 0 0 0 0

*MAT_DAMPER_VISCOUS_TITLE

Damper_y_1

$# mid dc

7 &par_9

*SECTION_DISCRETE_TITLE

Damper_2

$# secid dro kd v0 cl fd

4 0 0.0 0.0 0.0 0.0

$# cdl tdl

0.0 0.0

*MAT_ELASTIC_TITLE

rubber_not_used

$# mid ro e pr da db not used

21.10000E-9 500.00.49000001 0.0 0.0 0

*MAT_DAMPER_VISCOUS_TITLE

Damper_x_2

$# mid dc

10 &par_8

*MAT_DAMPER_VISCOUS_TITLE

Damper_y_2

$# mid dc

11 &par_10

*DEFINE_COORDINATE_SYSTEM_TITLE

cable_direction

$# cid xo yo zo xl yl zl

1-53.399685-0.1832911 2970.4487 -1000.0 0.0 4200.0

$# xp yp zp

-1000.0 0.0 3200.0

*DEFINE_COORDINATE_SYSTEM_TITLE

cable_direction_2
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$# cid xo yo zo xl yl zl

2 53.4000026.5396E-15 2970.0 1000.0 0.0 4200.0

$# xp yp zp

1000.0 0.0 3200.0

*DEFINE_CURVE

$# lcid sidr sfa sfo offa offo dattyp lcint

1 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

0.0 0.0

1.0 1.0

10.0 1.0

*DEFINE_CURVE

$# lcid sidr sfa sfo offa offo dattyp lcint

2 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

2.0 0.0

2.00024414 0.46030399

2.00048828 0.835998

2.00073242 1.19890499

2.00097656 1.53562903

2.0012207 1.832165

2.00146484 2.0726819

2.00170898 2.24561095

2.00195313 2.30832791

2.00219727 2.26083398

2.00244141 2.128093

2.00268555 1.93994105

2.00292969 1.726825

2.00317383 1.52345097

2.00341797 1.32494795

2.00366211 1.15323699

2.00390625 0.98761499

2.00415039 0.82747298

2.00439453 0.65515298

2.00463867 0.50962502

2.00488281 0.37505701

2.00512695 0.255712

2.00537109 0.0

2.00561523 0.0
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2.00585938 0.0

*DEFINE_CURVE_TITLE

damping

$# lcid sidr sfa sfo offa offo dattyp lcint

3 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

0.0 50.0

2.0 50.0

2.00001001 1.20000005

10.0 1.20000005

*SET_NODE_LIST_TITLE

NODESET(SPC) 2

$# sid da1 da2 da3 da4 solver

2 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1228 1227 0 0 0 0 0 0

*SET_NODE_LIST_TITLE

NODESET(SPC) 3

$# sid da1 da2 da3 da4 solver

3 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1228 1227 0 0 0 0 0 0

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

4 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1228 0 0 0 0 0 0 0

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

5 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1227 0 0 0 0 0 0 0

*SET_NODE_LIST_TITLE

NODESET(SPC) 6

$# sid da1 da2 da3 da4 solver

6 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1230 1229 0 0 0 0 0 0

*SET_NODE_LIST
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$# sid da1 da2 da3 da4 solver

7 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

236 690 724 755 721 0 0 0

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

8 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1231 1232 0 0 0 0 0 0

*SET_PART_LIST

$# sid da1 da2 da3 da4 solver

1 0.0 0.0 0.0 0.0MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 2 0 0 0 0 0 0

*DAMPING_GLOBAL

$# lcid valdmp stx sty stz srx sry srz

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*DAMPING_PART_STIFFNESS

$# pid coef

11.30000E-5

*ELEMENT_SHELL

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

*ELEMENT_DISCRETE

$# eid pid n1 n2 vid s pf offset

1121 7 246 1236 0 1.0 0 0.0

1122 7 126 1233 0 1.0 0 0.0

1123 8 126 1234 0 1.0 0 0.0

1124 8 246 1235 0 1.0 0 0.0

*ELEMENT_MASS

$# eid nid mass pid

1111 721 2.100000e-004 1

1112 755 2.100000e-004 1

1113 724 2.100000e-004 1

1114 690 2.100000e-004 1

1115 236 2.100000e-004 1

1116 722 2.100000e-004 1

*NODE

$# nid x y z tc rc
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*END

B.4 Pole

$# LS-DYNA Keyword file created by LS-PrePost(R) V4.3 (Beta) - 27Jul2015(09:00)

$# Created on Jan-07-2016 (18:12:26)

*KEYWORD MEMORY=500000000

*TITLE

$# title

LS-DYNA keyword deck by LS-PrePost

*CONTROL_IMPLICIT_GENERAL

$# imflag dt0 imform nsbs igs cnstn form zero_v

02.44100E-4 2 1 2 0 0 0

*CONTROL_TERMINATION

$# endtim endcyc dtmin endeng endmas

6.5 0 0.0 0.01.000000E8

*DATABASE_NODOUT

$# dt binary lcur ioopt option1 option2

2.44141E-4 0 0 1 0.0 0

*DATABASE_HISTORY_NODE_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

8 0 0 0 0 0 0 0

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 1 1 1 1 1 1

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

3 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

7 0 1 1 1 1 1 1

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

7 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

8649 8648 0 0 0 0 0 0
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*BOUNDARY_SPC_SET

$# nsid cid dofx dofy dofz dofrx dofry dofrz

9 0 1 1 1 0 0 0

*SET_NODE_LIST

$# sid da1 da2 da3 da4 solver

9 0.0 0.0 0.0 0.0MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

8863 8812 0 0 0 0 0 0

*LOAD_BEAM_SET

$# esid dal lcid sf

1 1 1 -0.681

*LOAD_BODY_PARTS

$# psid

1

*LOAD_BODY_Z

$# lcid sf lciddr xc yc zc cid

1 9810.0 0 0.0 0.0 0.0 0

*LOAD_NODE_POINT

$# nid dof lcid sf cid m1 m2 m3

6094 1 3 100.0 0 0 0 0

5887 2 3 100.0 0 0 0 0

*PART

$# title

$# pid secid mid eosid hgid grav adpopt tmid

10 12 5 0 0 0 0 0

*SECTION_BEAM_TITLE

cables

$# secid elform shrf qr/irid cst scoor nsm

12 1 1.0 2 1 0.0 0.0

$# ts1 ts2 tt1 tt2 nsloc ntloc

10.0 10.0 0.0 0.0 0.0 0.0

*MAT_ELASTIC_TITLE

cables

$# mid ro e pr da db not used

52.70000E-9 69000.00.33399999 0.0 0.0 0

*PART

$# title
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$# pid secid mid eosid hgid grav adpopt tmid

11 1 2 0 0 0 0 0

*SECTION_BEAM_TITLE

reinforcement

$# secid elform shrf qr/irid cst scoor nsm

1 3 1.0 5 0 0.0 0.0

$# a rampt stress

201.0 0.0 0.0

*MAT_ELASTIC_TITLE

Reinforcement

$# mid ro e pr da db not used

27.83000E-9 193000.00.30000001 0.0 0.0 0

*PART

$# title

LSHELL52

$# pid secid mid eosid hgid grav adpopt tmid

52 2 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_52

$# secid elform shrf nip propt qr/irid icomp setyp

2 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

52.0 52.0 52.0 52.0 0.0 0.0 0.0 0

*MAT_ELASTIC_TITLE

Concrete

$# mid ro e pr da db not used

12.35000E-9 42240.0 0.2 0.0 0.0 0

*PART

$# title

LSHELL53

$# pid secid mid eosid hgid grav adpopt tmid

53 3 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_53

$# secid elform shrf nip propt qr/irid icomp setyp

3 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

53.0 53.0 53.0 53.0 0.0 0.0 0.0 0

*PART
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$# title

LSHELL54

$# pid secid mid eosid hgid grav adpopt tmid

54 4 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_54

$# secid elform shrf nip propt qr/irid icomp setyp

4 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

54.0 54.0 54.0 54.0 0.0 0.0 0.0 0

*PART

$# title

LSHELL55

$# pid secid mid eosid hgid grav adpopt tmid

55 5 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_55

$# secid elform shrf nip propt qr/irid icomp setyp

5 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

55.0 55.0 55.0 55.0 0.0 0.0 0.0 0

*PART

$# title

LSHELL56

$# pid secid mid eosid hgid grav adpopt tmid

56 6 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_56

$# secid elform shrf nip propt qr/irid icomp setyp

6 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

56.0 56.0 56.0 56.0 0.0 0.0 0.0 0

*PART

$# title

LSHELL57

$# pid secid mid eosid hgid grav adpopt tmid

57 7 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_57
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$# secid elform shrf nip propt qr/irid icomp setyp

7 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

57.0 57.0 57.0 57.0 0.0 0.0 0.0 0

*PART

$# title

LSHELL58

$# pid secid mid eosid hgid grav adpopt tmid

58 8 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_58

$# secid elform shrf nip propt qr/irid icomp setyp

8 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

58.0 58.0 58.0 58.0 0.0 0.0 0.0 0

*PART

$# title

LSHELL59

$# pid secid mid eosid hgid grav adpopt tmid

59 9 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_59

$# secid elform shrf nip propt qr/irid icomp setyp

9 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

59.0 59.0 59.0 59.0 0.0 0.0 0.0 0

*PART

$# title

LSHELL60

$# pid secid mid eosid hgid grav adpopt tmid

60 10 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_60

$# secid elform shrf nip propt qr/irid icomp setyp

10 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

60.0 60.0 60.0 60.0 0.0 0.0 0.0 0

*PART

$# title
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LSHELL61

$# pid secid mid eosid hgid grav adpopt tmid

61 11 1 0 0 0 0 0

*SECTION_SHELL_TITLE

t_61

$# secid elform shrf nip propt qr/irid icomp setyp

11 2 1.0 5 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

61.0 61.0 61.0 61.0 0.0 0.0 0.0 0

*PART

$# title

damper_X

$# pid secid mid eosid hgid grav adpopt tmid

62 13 6 0 0 0 0 0

*SECTION_DISCRETE_TITLE

damper_x

$# secid dro kd v0 cl fd

13 0 0.0 0.0 0.0 0.0

$# cdl tdl

0.0 0.0

*MAT_DAMPER_VISCOUS_TITLE

Damper_x

$# mid dc

6 2.0

*PART

$# title

damper_y

$# pid secid mid eosid hgid grav adpopt tmid

63 14 7 0 0 0 0 0

*SECTION_DISCRETE_TITLE

Damper_y

$# secid dro kd v0 cl fd

14 0 0.0 0.0 0.0 0.0

$# cdl tdl

0.0 0.0

*MAT_DAMPER_VISCOUS_TITLE

Damper_y

$# mid dc

7 2.0
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*MAT_CABLE_DISCRETE_BEAM_TITLE

cable

$# mid ro e lcid f0 tmaxf0 tramp iread

42.70000E-9 69000.0 0 0.0 0.0 0.0 0

*DEFINE_CURVE

$# lcid sidr sfa sfo offa offo dattyp lcint

1 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

0.0 0.0

1.0 1.0

10.0 1.0

*DEFINE_CURVE_TITLE

damping

$# lcid sidr sfa sfo offa offo dattyp lcint

2 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

0.0 20.0

2.0 20.0

2.00024414 2.47000003

10.0 2.47000003

*DEFINE_CURVE_TITLE

impulse

$# lcid sidr sfa sfo offa offo dattyp lcint

3 0 1.0 1.0 0.0 0.0 0 0

$# a1 o1

2.0 0.0

2.00024414 0.46030399

2.00048828 0.835998

2.00073242 1.19890499

2.00097656 1.53562903

2.0012207 1.832165

2.00146484 2.0726819

2.00170898 2.24561095

2.00195313 2.30832791

2.00219727 2.26083398

2.00244141 2.128093

2.00268555 1.93994105

2.00292969 1.726825

2.00317383 1.52345097
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2.00341797 1.32494795

2.00366211 1.15323699

2.00390625 0.98761499

2.00415039 0.82747298

2.00439453 0.65515298

2.00463867 0.50962502

2.00488281 0.37505701

2.00512695 0.255712

2.00537109 0.0

2.00561523 0.0

2.00585938 0.0

*SET_BEAM

$# sid

1

$# k1 k2 k3 k4 k5 k6 k7 k8

*SET_PART_LIST

$# sid da1 da2 da3 da4 solver

1 0.0 0.0 0.0 0.0MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

10 11 52 53 54 55 56 57

58 59 60 61 0 0 0 0

*SET_PART_LIST

$# sid da1 da2 da3 da4 solver

2 0.0 0.0 0.0 0.0MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

10 11 52 53 54 55 56 57

58 59 60 61 0 0 0 0

*SET_PART_LIST

$# sid da1 da2 da3 da4 solver

3 0.0 0.0 0.0 0.0MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

10 11 52 53 54 55 56 57

58 59 60 61 0 0 0 0

*DAMPING_GLOBAL

$# lcid valdmp stx sty stz srx sry srz

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*DAMPING_PART_STIFFNESS_SET

$# psid coef

31.25000E-4
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*ELEMENT_SHELL

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

*ELEMENT_BEAM

$# eid pid n1 n2 n3 rt1 rr1 rt2 rr2 local

*ELEMENT_DISCRETE

$# eid pid n1 n2 vid s pf offset

8191 62 625 8648 0 1.0 0 0.0

8192 63 625 8649 0 1.0 0 0.0

*NODE

$# nid x y z tc rc

*END
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