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Abstract

The phenomenon of aerodynamic instability caused by the wind is usually a major
design criterion for long-span cable-supported bridges. If the wind speed exceeds the
critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The
prediction of the flutter boundary, therefore, requires accurate and robust models. The
complexity and uncertainty of models for such engineering problems demand strategies
for model assessment. This study is an attempt to use the concepts of sensitivity and
uncertainty analyses to assess the aeroelastic instability prediction models for long-span
bridges. The state-of-the-art theory concerning the determination of the flutter stability
limit is presented. Since flutter is a coupling of aerodynamic forcing with a structural
dynamics problem, different types and classes of structural and aerodynamic models can
be combined to study the interaction. Here, both numerical approaches and analytical
models are utilised and coupled in different ways to assess the prediction quality of the
coupled model.

Bridge decks are often bluff and therefore the aeroelastic forces under wind action
have to be experimentally evaluated in wind tunnels or numerically computed
through Computational Fluid Dynamics (CFD) simulations. The detailed wind-tunnel
investigations are expensive and time-consuming but are necessary during the design
process of the long-span bridges. However, these tests have limitations in reproducing
the full-scale problem and sometimes avoided or limited to the final design stage for
less important structures. The CFD simulations are commonly used as alternative
for such situations. This research aims at studying various combinations of analytical
and numerical models to predict the flutter phenomenon. The self-excited forces
are modelled using aerodynamic derivatives obtained through CFD forced vibration
simulations on a section model. The structural representations were dimensionally
reduced to two-degree-of-freedom section models calibrated from global models as well
as multi-degree-of-freedom models.

A probabilistic flutter analysis approach utilising a meta-modelling technique is used
to evaluate the effect of input parameter uncertainty. A bridge section is numerically
modelled in the CFD simulations. Here flutter derivatives are considered as random
variables. A novel approach for carrying out a sensitivity analysis of the flutter
phenomenon is developed. The sensitivity with respect to the uncertainty of aerodynamic
derivatives and structural parameters is considered by taking into account the probability
distributions. A significant influence on the flutter limit is found by including
uncertainties of the aerodynamic derivatives due to different interpretations of scatter
in the CFD simulations. The results indicate that the proposed probabilistic flutter
analysis provides extended information concerning the accuracy of the prediction of
flutter limits. The ranking of flutter prediction models is done based on the concepts of
total uncertainty. The final aim is to set-up a framework to estimate the flutter limit
with probabilistic input parameters. The model choice for a given practical analysis
scenario is also discussed in the context of the analysis findings. This study shows the
difficulties in this regard which have to be overcome but also highlights some interesting
and promising results.

Keywords: Flutter, bridges, sensitivity, uncertainty, meta-models, model assessment.
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Chapter 1

Introduction

1.1 Motivation

Cable-supported bridges such as suspension and cable-stayed bridges are common to
connect across great distances. These bridges are viewed as not only landmarks but
lifeline structures. Bridges are an essential part of the fast economic growth as well as
a link between people. The history of cable-supported bridges spans over two centuries.
Before that time, the design of structures was based mostly on art and experience and
not on engineering, since the structural knowledge was limited. As the material science
and knowledge concerning the structural behaviour progressed, the design of structures
became more science than art.

The first steel suspension bridge over the Jacob’s Creek in the USA (with a span 21 m)
was built in 1801 [1] whereas the first cable-supported bridge composed of drawn iron
wires was built in Geneva (Switzerland) in 1823. The failure of the first Dryburgh Abbey
Bridge in Scotland (1818) due to wind is the first significant example when several of
the stay connections failed during a storm. The Brighton Chain Pier, England (1836),
the Tay Bridge, Scotland (1879) and the original Tacoma Narrows Bridge, USA (1940)
[2] are the most notable examples of long-span bridge failure where wind played a major
role.

Figure 1.1: The original Tacoma Narrows Bridge collapse, USA [3].
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1.2. Objective of the Study

Several bridges failed prior to the collapse of the original Tacoma Narrows Bridge due
to wind actions; however, this was the failure that decreed bridge engineers to conduct
scientific investigations of bridge aerodynamics. It was the third longest suspension
bridge in the world with a main span of 853 m. The deck started to oscillate with very
large amplitudes in the vertical vibration modes at a wind speed of about 68 km/h
(19 m/s) and around 45 minutes later the motion changed into a torsional mode [4].
This eventually led to failure of some overstressed members and the main span collapsed
as shown in Figure 1.1. The mechanics behind dynamic Wind-Structure Interaction
(WSI) was not fully understood at that time. Traditional practices of design based on
experience alone and the lack of understanding of the nature of wind mainly contributed
to this [5]. Later, researchers [6] tried to explain the mechanisms of ultimate failure of
the bridge and demonstrated, physically as well as mathematically, that the main cause
was not the forced resonance but the self-excitation which is an aerodynamically-induced
one. The new developments in the field of bridge aerodynamics started after the collapse
of the original Tacoma Narrows Bridge and the investigations lead to the development
of experimental and analytical tools for the prediction of long-span bridge response to
the wind.

Today, the spans of the long-span suspension and cable-stayed bridges have been
extended to new limits. The longest bridge in the world built at the end of the last
century is the suspension bridge across the Akashi-Kaikyo Straits in Japan shown in
Figure 1.2 with a main span of 1991 m and nearly 4 km of overall length. Aerodynamic
characteristics governed the design of this bridge [2]. The Russky Bridge Russia (2012)
is the world’s longest cable-stayed bridge, with an 1104 m long central span. With the
increase in bridge span length, the modern bridge structures are more flexible, lightweight
and their structural characteristics require special treatment of aerodynamic analysis and
design under wind action.

Figure 1.2: Akashi-Kaikyo Bridge, Japan [5].

1.2 Objective of the Study

The study of the WSI is essential for the analysis and design of long-span
cable-supported bridges. The phenomenon of aerodynamic instability caused by the wind
is usually a major design criterion for such structures. This interaction of the wind
and structural response is potentially dangerous at high wind speeds and could lead
to aeroelastic instabilities such as flutter. If the wind speed exceeds the critical flutter
speed of the bridge, this constitutes an ultimate limit state. The prediction of the flutter
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CHAPTER 1. INTRODUCTION

boundary, therefore, requires accurate and robust models. Bridge decks are often bluff,
therefore, the aeroelastic forces under wind action have to be experimentally evaluated
in wind tunnels or numerically computed through Computational Fluid Dynamics (CFD)
simulations.

The assessment of models has gained much attention in recent years in the field
of structural engineering. The complexity and uncertainty of models for engineering
problems demand strategies for model assessment. There exist state-of-the-art prediction
models which go through development and validation processes. A valid question
concerns how the model itself can be utilised to quantify its quality by studying how
well it predicts certain phenomena.

The main objective of this research is to develop a framework for assessing the quality
of coupled models used in the analysis of aeroelastic instabilities of bridges by utilising
uncertainty measures and the ability to predict the phenomena. A wide range of models
has been used for this purpose. It is essential to assess the model for a certain range
of parameters for which it is used. This makes it challenging to cover the whole
range of parameters; however, it can be possible to cover some part of this range
by selecting several parameter sets. A schematic for model assessment possibilities is
shown in Figure 1.3. Bridges with streamlined as well as bluff cross sections subjected
to aeroelastic instabilities are studied for this purpose. The ability to predict the flutter
stability limit of the structure and the uncertainty related to this prediction is used as
an indicator of the model quality.
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Figure 1.3: Model assessment domains vs. model application domains:
(top-left) undesirable or unrealistic situation, (top-right) useful to show model robustness,
(bottom-left) most common situation, (bottom-right) ideal situation.
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1.3 Contribution of the Thesis

The framework developed for model assessment consists of three main steps as shown
in Figure 1.4. In the first step, the models are selected for the quantity of interest i.e.
flutter limit (Chapter 5 and Chapter 6). The next step is to identify the influential
input parameters (Chapter 7). Then the parameter sensitivity and uncertainty are
quantified (Chapter 8). Finally, the model ranking is done which is based on the overall
uncertainty.

It is worth mentioning here that two assumptions are made throughout the thesis: the
assessed models are ensured to converge and the numerical uncertainty is not considered.
The models have been used without the optimum choice of numerical parameters.
The aim of this research is not to improve the already existing models. Rather, the
objective is to highlight their distinct features and to develop a framework to quantify
uncertainties in the model predictions. The contribution of this research is summarized
as follows:

� A thorough study is performed on the investigated problem to compute the flutter
limit by using a wide range of available state-of-the-art models. It provides
useful insight into understanding the physics underlying the complex aeroelastic
phenomena of flutter.

� Individual models, as well as coupling strategies for structure and aerodynamic
forcing, are reviewed and implemented to assess the prediction quality of the hybrid
model. Additionally, an approach is presented to perform flutter analysis using a
time integration scheme without performing an eigenvalue analysis.

� The concepts of sensitivity and uncertainty analysis are used to identify essential
input parameters in flutter analysis. This was done by making use of deterministic
as well as of probabilistic approaches. A framework is developed to examine
sensitivities of flutter limit to structural parameters and aerodynamic behaviour
of the bridge deck.

� An approach is presented to generate turbulent flow in a flow solver based on a
uniform incident flow. The approach is computationally feasible and is very similar
to the well-accepted approach used in the wind tunnel tests.

� A novel approach is presented to consider the uncertainty related to the prediction
of the aerodynamic behaviour of a bridge cross section and it is shown how this
uncertainty propagates to the model output.

� Meta-models are developed to make the numerical analysis more efficient by
relating input parameters to the model output with simple mathematical functions.
For this purpose, polynomial regression and moving least-squares were used to
replace time intensive numerical simulations. Their ability and efficiency to perform
and capture the output response for different ranges of input parameters is
highlighted.

� Models are ranked by using the concept of total uncertainty which includes input
parameter uncertainty and model uncertainty. This is done by making use of the
adjustment factor approach to quantify model uncertainty which is estimated by
the difference between the model average and the adjusted model.

� An approach is presented to make use of already available data for bridge cross
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sections to utilise for flutter stability analysis of similar structures by using response
surface techniques.

Select Models

Quantity of interest
i.e. flutter limit

Sensitivities to flutter limit

Influential input
parameters

Sensitivity analysis

Sensitivity
indices

Parameter uncertainty analysis

Mean, variance,
distribution

Model uncertainty

Overall uncertainty,
model ranking

Model Combinations

Deterministic Sensitivity Analysis

Probabilistic Assessment

Figure 1.4: Developed framework for model assessment.

1.4 Outline of the Thesis

The layout of this dissertation is arranged as follows.

Chapter 2 provides fundamentals of probabilistic analyses and assessment procedures
based on the sensitivity and uncertainty analyses. The algorithms and aspects related
to their implementation are explained.
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1.4. Outline of the Thesis

Chapter 3 introduces the subject of bridge aerodynamics and aeroelastic phenomena
related to the design and analysis of long-span bridges. Important developments made
in this field are reviewed and referenced.

The methods used in the aerodynamic analysis of structures are discussed in Chapter 4
focusing more on analytical and numerical approaches, whereas experimental methods
are also briefly described. A comprehensive information on flutter analysis collected
from the literature has been summarised in the appendices related to this chapter.

The analytical and numerical models for flutter analysis of bridges are explained in
Chapter 5. A comprehensive review of different modelling techniques is provided. A wide
range of models was utilised and coupled in different ways to perform flutter stability
analysis. Furthermore, an approach to compute flutter limit is presented without the
need of performing an eigenvalue analysis. The implementations of these models are
described in detail.

In Chapter 6, the application of different flutter analysis approaches to the selected
reference structures is shown. The merits and demerits of these approaches are discussed
in detail. The flutter limits computed by means of these models are also compared.

Chapter 7 is devoted to the study of the sensitivity of the model output to the input
parameters. It also provides studies concerning model robustness. The capabilities of
models to consider different scenarios are shown including their limitations.

In Chapter 8, probabilistic sensitivity and uncertainty analyses have been used to identify
the essential input parameters and their effects on the model response are quantified. A
novel approach considering aerodynamic uncertainty for bridge deck sections is developed.
The effectiveness of response surface methods is also highlighted. Input parameter
uncertainties and model uncertainties are computed. Ranking of models is done based
on their total uncertainty.

Finally, Chapter 9 provides conclusions derived from the obtained results and
recommendations for applications and future research are offered.
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Chapter 2

Fundamentals of Probabilistic Analysis

2.1 Introduction

The assessment of models require sensitivity and uncertainty analyses where model
parameters are defined by their statistical properties and the subsequent model response
is evaluated. This chapter explains the basis of stochastic input parameters and
sampling strategies for sensitivity and uncertainty analyses. Deterministic as well as
probabilistic methods are discussed. Moreover, response surface approaches are also
described. Finally, the concepts of the Adjustment Factor Approach (AFA) have been
utilised to quantify model framework uncertainty.

2.2 Random Variables and Random Vectors

Probability is commonly defined as the measure of the likelihood that an event will
occur. The probability P of a single real random variable X to be smaller than a
deterministic value x is defined by the Cumulative Distribution Function (CDF) F (X)
as:

F (X) = P [X < x]. (2.1)

The derivative of the CDF with respect to x is known as the Probability Distribution
Function (PDF) f (x):

f (x) =
δF (X)

δx
. (2.2)

The mean value µX of the corresponding distribution type is

µX = E[X] =

∞∫

−∞

xf (x) dx. (2.3)

The variance VX is defined as

VX =

∞∫

−∞

(x− µX)2f (x) dx. (2.4)

The standard deviation σX is square root of variance

σX =
√
VX . (2.5)

Sometimes it is convenient to represent normalised standard deviation known as
coefficient of variation CVX

CVX =
σX
µX

. (2.6)
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Some typical distribution functions are shown in Table 2.1.

For multidimensional problems, the correlation between variable X1 and X2 is defined
with the help of the covariance function CXX(X1, X2) as:

CXX(X1, X2) = E[(X1 − X̄1)(X2 − X̄2)]. (2.7)

The correlation coefficient ρ(X1, X2) is used as a non-dimensional indicator of parameter
dependence. A value of the correlation coefficient equal to 0 describes two variables as
independent and 1 (or -1) implies full dependence. The coefficient of correlation is the
standardised covariance between two random variables X1 and X2

ρ(X1, X2) =
E[(X1 − X̄1)(X2 − X̄2)]√

V (X1)V (X2)
=
CXX(X1, X2)

σX1σX2

, −1 ≤ ρ(X1, X2) ≤ 1, (2.8)

where X1 and X2 are the sample values, X̄1, X̄2 and σX1, σX2 are the estimates of the
mean values and the standard deviations, respectively. The significance of the correlation
coefficient is further discussed for the variance based sensitivity and uncertainty analyses
in Sections 2.5.1 and 2.5.2.

2.3 Sampling Techniques

Many statistical quantities can easily be estimated by sampling techniques. A large
number of samples is required to represent multi-parameter problems with sufficient
accuracy. The required number of samples increases exponentially with the increase in
the number of input parameters. The design space of the input parameters is required to
be scanned with discrete points. There are several techniques to generate samples from
distributions such as simple Monte Carlo Sampling (MCS), Latin Hypercube Sampling
(LHS) and Advanced Latin Hypercube Sampling (ALHS). Here each set of sampled
parameter values belongs to the specified inputs.

After the identification of stochastic input parameters with their distributions, the design
space is scanned by Design of Experiments (DoE) or sampling methods. These design
schemes are mainly based on a regular arrangement of the samples. Hence stochastic
sampling schemes can be used to reduce the number of samples. Further details about
classical DoE schemes can be found in [10]. The DoE is the sampling plan in the input
parameter space. In contrast to random sampling, the DoE provides a unique sample
value in the input parameter space. The assessment of the quality of such designs is
important, keeping in view the number of samples is limited to reduce computational
costs. The accuracy of the sampled parameters is often tested by computing the mean
and standard deviation of the generated samples.

2.3.1 Simple Random Sampling

The Simple Random Sampling (SRS), also called simple or crude MCS is the classical
approach to study the propagation of input parameter uncertainties through model
output. It assumes a uniform distribution with given lower and upper bounds. The
input parameters are sampled independently with their respective PDF. Often clusters
and gaps are observed when less number of samples are used. It produces undesired
correlations between the input parameters which can influence the sensitivity measures.
The intended correlations can be introduced in this approach; however, the sampling
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Table 2.1: Typical probability distributions with their properties [7, 8, 9].

Limits Distribution Functions Distribution Plots

Uniform
a ≤ x ≤ b

f (x) = 1
b−a

F (X) = x−a
b−a

µX = a+b
2

σX = b−a√
12

f
(x
)

f
(x
)

f
(x
)

f
(x
)

f
(x
)

x x xxx
µX

µX µX µXµX

σX
σX

σX σXσX

ǫaa b bcq

Normal
−∞ ≤ x ≤ ∞

f (x) = 1
σX
√

2π
exp

(
− (x−µX)2

2σ2
X

)

F (X) = 1
σX
√

2π

∫ x
−∞ exp

(
− (t−µX)2

2σ2
X

)
dt

f
(x
)

f
(x
)

f
(x
)

f
(x
)

f
(x
)

x x xxx
µX

µX µX µXµX

σX
σX

σX σXσX

ǫaa b bcq

Log-normal
q ≤ x ≤ ∞

f (x) = 1
λ
√

2π(x−q) exp

(
− [ln( x−qm−q )]

2

2λ2

)

F (X) = 1
xσX
√

2π

∫ x
0

exp

(
− ln( x−qm−q )

2

2λ2

)
dt

µX = exp
(
q + λ2

2

)

σ2
X = exp (2q + λ2) (expλ2 − 1)

q: physical limit for x

m: distribution median

f
(x
)

f
(x
)

f
(x
)

f
(x
)

f
(x
)

x x xxx
µX

µX µX µXµX

σX
σX

σX σXσX

ǫaa b bcq

Triangular
a ≤ x ≤ b

f (x) = 2(x−a)
(b−a)(c−a)

; a ≤ x < c

f (x) = 2(b−x)
(b−a)(b−c) ; c < x ≤ b

F (x) = (x−a)2

(b−a)(c−a)
; a ≤ x < c

F (x) = 1− (b−x)2

(b−a)(b−c) ; c < x ≤ b

µX = a+b+c
2

σX =
√

a2+b2+c2−ab−ac−bc
18

f
(x
)

f
(x
)

f
(x
)

f
(x
)

f
(x
)

x x xxx
µX

µX µX µXµX

σX
σX

σX σXσX

ǫaa b bcq

Exponential
ε ≤ x ≤ ∞

f (x) = λ exp(−λx)

F (x) = 1− exp(−λx)

µX = λ−1

σX = λ−2

f
(x
)

f
(x
)

f
(x
)

f
(x
)

f
(x
)

x x xxx
µX

µX µX µXµX

σX
σX

σX σXσX

ǫaa b bcq

where,

a, b: minimum and maximum distribution bounding limits, respectively

µX , σX : mean and standard deviation, respectively

λ: shape parameter
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will not be random in actual the sense. It provides straightforward and unbiased
results. However, the number of samples required is large, making the simulations time
consuming depending on the complexity of the model.

2.3.2 Latin Hypercube Sampling

The LHS allows to overcome such problems even for a smaller number of samples. The
main idea is to divide the range of each input parameter into a certain number of
intervals of equal marginal probability. Correlations can be introduced by the method
of rank correlations by Iman and Conover [11]. It is an alternative approach which
gives significantly better estimators of model response and covers the parameter space
effectively. Figure 2.1 illustrates the advantage of the LHS sampling approach over the
SRS. A smaller number of samples is required to obtain reasonable convergence. The
limitation of this approach is that the sampling has to be done once in the beginning
and more samples cannot be added later.

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

X1

X
2

0.00 0.25 0.50 0.75 1.00
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1.00
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X
2

Figure 2.1: Comparison of sampling approaches:
(left) Simple Random Sampling,
(right) Latin Hypercube Sampling.

2.3.3 Introducing Correlations between Samples

The input parameters are assumed to be independent of each other when using the
SRS, therefore the PDF should be uncorrelated. However, in actual situations these
parameters can be correlated and therefore it may be necessary to introduce correlation
between the parameter samples. If the input parameters are uncorrelated in reality but
sampled as correlated then the model response can show false dependence. A common
approach to generate correlated samples using a given correlation matrix is by generating
a U matrix such that

UTU = C, (2.9)

where C is the given correlation matrix and U is the matrix which can be obtained
by Cholesky decomposition. The correlated samples are generated from the uncorrelated
samples by multiplying with the U matrix.

Rc = RU, (2.10)

where R are the uncorrelated samples and Rc are the correlated samples.
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2.4 Response Surface Method

Variance based sensitivity and uncertainty analyses become expensive and inefficient for
complex models. The response surface approach may be used in this case. Surrogate
modelling can be viewed as a non-linear inverse problem for which the aim is to
determine a continuous function of a set of parameters on the basis of limited data. The
choice of surrogate model is important to obtain model parameters. A response surface
with reasonable quality can be achieved if a sufficient number of numerical simulations
are performed with suitable combinations of input parameters. This response surface
can then be used for the sensitivity and uncertainty analyses.

2.4.1 Polynomial Regression

Polynomial regression is used to approximate the model response by polynomial basis
function. This function could be linear, quadratic or higher order with or without
coupling terms. This approach is simple and easy to implement. These parametric
models relate the input parameters to the global model response. The model output
Yi for a given set Xi of the input parameters X can be formulated as the sum of the
approximated value Ŷi and an error term εi as:

Y (Xi) = Ŷi(Xi) + εi = PT(Xi)β + εi (2.11)

where PT(X) is the polynomial basis,

PT(X) =
[

1 x1 x2 x3 . . . x2
1 x2

2 x2
3 . . . x1x2 x1x3 . . .

]
(2.12)

and β is a vector of unknown regression coefficients. These coefficients are determined
from the support points by assuming independent errors with equal variance at each
point. The regression coefficients β̂ can be estimated by least-squares by minimising the
following:

Lpoly =
N∑

i=1

ε2i = εTε = (Y −Xβ)T (Y −Xβ) . (2.13)

The resulting least-squares solution in matrix form reads

β̂ = (PTP)−1PTY (2.14)

where P is a matrix containing the basis polynomials of the support points and Y is the
vector of sampled point values. The predicted response for any set of input parameters
can be found as:

Ŷ = Xβ̂, (2.15)

where Ŷ is the approximated response. This model can easily be used several times
once it is developed.

2.4.2 Moving Lest-Squares

The Moving Least-Squares (MLS) approach has the ability to capture localised regions
of the model response. This is achieved by introducing radial weighting functions which
depend on the location of the data point being evaluated. This is a modified form
of polynomial response surface approach where equal weights are considered. In the
MLS, the data points close to the evaluated point influence more and points at a
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larger distance have less effect. It provides superior behaviour but requires greater
computational effort. Additionally, it requires being performed each time for a new
data set. More detailed discussion on the MLS can be found in [12].

The weighted lest-squares solution is obtained by minimising the following:

LMLS =
N∑

i=1

ε2iwi = εTWε = (Y −Xβ)TW (Y −Xβ) . (2.16)

Similarly the weighted regression coefficients β̂ can be estimated as:

β̂ = (PTWP)−1PTWY , (2.17)

where W is the weighting function depending on the location of each support point.
The approximated response from the set of input parameters can be found as:

Ŷ = PT(PTWP)−1PTWY . (2.18)

The Gaussian weighting function can be used such as:

wG = e−
s2

a2 , (2.19)

where s is the normalised distance between the support point and approximated point
and a is the shape factor, respectively. The normalised distance s can be computed as:

s =
‖ X −Xi ‖

D̃
, (2.20)

where D̃ is the influence radius.

2.4.3 Coefficient of Determination

The Coefficient of Determination (CoD) R2 shows the quality of approximation of a
regression model.

R2 =
SSR
SST

= 1− SSE
SST

, 0 ≤ R2 ≤ 1 (2.21)

where SST is equivalent to the total variation of the output Y , SSR represents the
variation due to the regression, and SSE is the unexplained variation:

SST =
N∑

i=1

(Yi − Ȳ )2, (2.22a)

SSR =
N∑

i=1

(Ŷi − Ȳ )2, (2.22b)

SSE =
N∑

i=1

(Yi − Ŷi)2. (2.22c)

If the CoD is close to 1, the approximation represents the support point values with
small errors. However, the polynomial model would fit exactly through the support
points, if their number is equivalent to the number of coefficients p. In this case, the
CoD would be equal to 1, independent of the true approximation quality. In order to
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penalise this over-fitting, the adjusted CoD was introduced [7]:

R2
adj = 1− SSE/(N − p)

SST/(N − 1)
= 1− N − 1

N − p(1−R2). (2.23)

The Coefficient of Prognosis (CoP) [13] based on cross-validation error estimates can
also be used as a model independent-measure to assess the model quality.

2.5 Probabilistic Model Assessment

Models in bridge aerodynamics are usually complex and use a large number of input
parameters. These input parameters are often correlated and sometimes associated with
high uncertainties. The uncertainties are propagated in the model solution and are
depicted in the final output. The assessment of overall model quality requires to take
into account these uncertainties in the analysis.

2.5.1 Sensitivity Analysis

Sensitivity analysis is the study of how the uncertainty in the output of a model can
be associated, qualitatively or quantitatively, with different sources of variation in the
model input [14]. A sensitivity analysis determines the change in model output values
that results from the changes in model input values. Thus it measures the change in
a localised region of the space of input parameters. The main objective of sensitivity
analysis is to identify the input parameters which have a significant influence on the
output and to quantify their relative importance. The parameters which have the
least effect on the output can be ignored to simplify the problem for further analyses.
Approach to sensitivity analysis can be divided into two main classes: deterministic and
probabilistic, sometimes also known as local and global sensitivity analyses, respectively.

2.5.1.1 Local Sensitivity Analysis

A deterministic approach to sensitivity studies is more common for linear models. The
model may be run for a few times with different parameter combinations varying one
parameter each time to have an impact on the model output. Assuming a model with
a scalar output Y as a function of a given set of n random input parameters Xi:

Y = f(X) = f(X1, X2, . . . , Xn), (2.24)

Si =
(4Y )i
4Xi

=
Y (Xi +4Xi)− Y (Xi)

4Xi

, i = 1, . . . , n (2.25)

where Si is the sensitivity coefficient reflecting the output according to a variation of
the input parameter Xi, and 4Y is the increment of estimated output. Applying a
Taylor series expansion, the derivative of Eq. (2.24) can be given by [15],

4Y =
n∑

i=1

Si(Xi −X i) (2.26)

where X i is the mean value of the input parameter Xi. The variation of 4Y and Y is
the same because the probability distributions of the two variables coincide with each
other with different locations of the mean value. Partial derivatives (cf. Eq. (2.25)) can
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be seen as a mathematical definition of the sensitivity of the model output with respect
to the model input.

This method is very efficient, easy to implement and requires only a few runs. However,
it has limitations in that it does not consider the correlation between the input
parameters and is not suitable for noisy data and non-linear response as the derivatives
may lead to inaccurate results. Moreover, it gives only local information around a given
parameter and does not give any information about the rest of the space whereas often
input parameters of complex models have a wide range of variation.

2.5.1.2 Global Sensitivity Analysis

Variance based sensitivity analysis is a form of Global Sensitivity Analysis. This method
is very suitable to quantify the contribution of noisy response. The proportion of
the output variance caused by a random input variable is directly quantified by these
methods. The parameter values are sampled with the PDF of the input parameters
according to a predefined strategy. Simulations are then performed and results are
post-processed. The important points to be addressed are:

� to find the influence of variation of each input parameter on the output,

� the contribution of the variance of each input parameter distribution to the
variance of the output distribution,

� the order of the input parameters with respect to their importance on the model
output

� identification of the parameter which has the highest influence,

� identification of the parameters which have insignificant influence,

� influence of parameter correlation on the model output,

� to measure the effect of interaction.

Variance based sensitivity analyses have been used to calculate first order and total
effects sensitivity indices according to Saltelli et al. [14]. The direct measure of sensitivity
is called first order sensitivity index Si or the main effect which is defined as:

Si =
VXi(EX∼i(Y |Xi))

V (Y )
= 1− EXi(VX∼i(Y |Xi))

V (Y )
,

n∑

i=1

Si ≤ 1 (2.27)

where V (Y ) is the unconditional variance of the model output and VXi(EX∼i(Y |Xi))
is the variance of Y caused by a variation of Xi only or the variance of conditional
expectation with X∼i denoting the matrix of all factors except Xi. Since first order
sensitivity indices measure only the decoupled influence of each input variable, an
extension for higher order coupling terms is necessary. Therefore, total effect sensitivity
indices STi are introduced as:

STi =
E(V (Y |X∼i))

V (Y )
= 1− VX∼i(EXi(Y |X∼i))

V (Y )
,

n∑

i=1

STi ≥ 1 (2.28)

where V (Y |X∼i) is the variance of Y caused by all model inputs without Xi and
measures the first order effects of Xi on the model output which does not contain any
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effect corresponding to Xi. The sum of total sensitivity indices is 1 if the model is purely
additive. This method is only suitable when the input parameters are uncorrelated.

Xu and Gertner [16] proposed a method by considering the contribution of model output
uncertainty by an individual parameter to be divided into two parts: the correlated
contribution and the uncorrelated contribution. This approach uses a regression-based
method to quantitatively decompose the total uncertainty in the model output into
partial variances contributed by correlated variations and partial variances contributed by
uncorrelated variations. It can successfully measure the uncertainty contribution where
the linear regression model describes well the actual model behaviour.

If the effect of each parameter Xi on model output Y is linear and only main effects are
important then the model can be simplified by a linear regression model. The partial
variance V̂i can be estimated as follows:

V̂i =
1

N − 1

N∑

j=1

(Ŷ
(i)
j − Ȳ )2, (2.29)

with
Ŷ

(i)
j = θ̂0 + θ̂iXi, (2.30)

where θ̂0 and θ̂i are the estimates for linear regression. Finally, uncorrelated variance
V̂ U
i can be derived as follows:

V̂ U
i =

1

N − 1

N∑

j=1

(Ŷ
(−i)
j − Ȳ )2, (2.31)

with
Ŷ

(−i)
j = r̂0 + r̂iXi, (2.32)

where r̂0 and r̂i are the estimates for linear regression. The correlated variance V̂ C
i can

be calculated by the following equation:

V̂ C
i = V̂i − V̂ U

i . (2.33)

Using the ratio of the partial variance and the total variance, the first order sensitivity
indices can be calculated for each parameter Xi:

Si =
V̂i

V̂
, (2.34a)

SUi =
V̂ U
i

V̂
, (2.34b)

SCi =
V̂ C
i

V̂
. (2.34c)

2.5.2 Uncertainty Analysis

The main objective of uncertainty analysis is to quantify the uncertainty in the output
as a result of uncertainty in the input parameters. This involves the identification of all
sources of uncertainty in the input parameters and their effects on the model response.
Uncertainty analysis helps to estimate the mean and standard deviation of the outputs.
It also includes the identification of characteristics of various probability distributions of
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the model output. The model output is described together with its associated probability
of occurrence.

The first step is the identification of input parameters potentially contributing to
uncertainty of the model predictions. The input parameter distributions are identified
either through expert judgement or based on empirical evidence. The standard deviation
of the probability density functions of each parameter expresses uncertainty on the
respective input parameter. Samples of input parameter are generated from the
corresponding PDF. Possible correlations between the varying parameters can also be
considered. The model is run in a sequential way with a different set of sampled input
parameters each time. The output is analysed using statistical methods. Extracting the
central measures from the output such as the distribution of the predicted values, mean,
standard deviation and the confidence intervals in order to quantify the uncertainty on
the model prediction.

If the input parameters are independent to each other, then the combined standard
uncertainty σX of the output can be expressed as:

σX =

√√√√
n∑

i=1

S2
i σ

2
Xi

(2.35)

where σXi is standard uncertainty that is corresponding to standard deviation for
expressing uncertainty of an input variable. In many cases, it is convenient to use
relative uncertainty instead of standard uncertainty. The normalised uncertainty and
corresponding normalised sensitivity coefficient can be obtained dividing them by their
mean values. The normalised sensitivity coefficient S̃i, normalised uncertainty σ̃X and
output Y can be expressed as follows:

S̃i =
(4Y )i/(Y )i

4Xi/X i

, (2.36)

σ̃X =

√√√√
n∑

i=1

S̃2
i

(
σXi
X i

)2

, (2.37)

Y = Y + Y

n∑

i=1

S̃i

(4Xi

X i

)
(2.38)

where Y is the mean output.

Since the relation of output and input parameters is expressed in the above equation,
the accuracy of the evaluated uncertainty is strongly depending on how the probability
models used in uncertainty analysis properly fit the natural variability of the input
parameters.

2.5.3 Model Framework Uncertainty

The uncertainties related to model output can be broadly classified into two categories.
The first is known as the ‘model parameter uncertainty’ which occurs as a result of
randomness in the input parameter which has been discussed in Section 2.5.2. The
second is called ‘model framework uncertainty’ which is due to lack of knowledge,
insufficient data and simplifications made in the modelling process. The approach
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presented here quantifies the model framework uncertainty considering the relative use
and accuracy of each model based on experts judgement. This is done by assigning
model probabilities to each model based on expert opinion which represents that the
selected model is the ‘best model’ among the set of models considered to be a good
candidate for the given engineering problem. Mosleh and Apostolakis [17] used the
Adjustment Factor Approach (AFA) to quantify model uncertainty with Bayes’ theorem
by utilising expert opinion in the absence of experimental data. This approach has been
widely used in the engineering problems. Zio and Apostolakis [18] quantified the model
uncertainty in the assessment of radioactive waste repository.

The model probabilities are decided from expert judgement based on the relative
advantage of individual model. The laws of probability theory holds and for the N
number of individual models from a set M of considered models,

M = {M1,M2, . . . ,MN} (2.39)

probability is bounded,
N∑

i=1

P (Mi) = 1, 0 ≤ P (Mi) ≤ 1 (2.40)

where P (Mi) is the probability of model i. In the absence of any information about
the model accuracy, the model probabilities may be divided equally. In such situations
any model can be considered as the ‘best model’ and the effect of other models can be
seen on this selection.

2.5.3.1 Adjustment Factor Approach

The AFA [19] propagates the model uncertainty into the model prediction by considering
an adjustment factor to be added to the best model to obtain the adjusted model. The
adjusted system response from a set of models can be predicted as:

yp = y∗ + E∗a (2.41)

where yp is the adjusted model, y∗ is the prediction of best model and E∗a is the
adjustment factor. The best model is the one which has the highest model probability.
The adjustment factor is used to account for the uncertainty in the selected best model.
The factor E∗a is assumed to be normally distributed which represents the uncertainty
associated with the selection of most accurate model. The first and second moment of
E∗a [20] can be calculated with the known model prediction probabilities as:

E (E∗a) =
N∑

i=1

P (Mi) (yi − y∗) , (2.42)

V (E∗a) =
N∑

i=1

P (Mi) (yi − E (yp))
2 , (2.43)

where P (Mi) is the probability of model i, yi is the prediction of model i without
considering parameter uncertainty. The models considered here are assumed to be
deterministic. The expected value of the adjusted model E (yp) can be calculated as
follows:

E (yp) = y∗ + E (E∗a) . (2.44)
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Since the models are considered deterministic the variance of adjusted model V (yp) will
be equal to the variance of the adjustment factor:

V (yp) = V (E∗a) . (2.45)

The Eqs. (2.44) and (2.45) represent a normally distributed adjusted model with some
variance representing the model framework uncertainty in the output. The prediction is
the weighted average of models with the help of model probabilities where the effect of
reference model vanishes [21]. The limitation of this approach is that in this form it
does not take into account the parameter uncertainty in each model since the models
are assumed deterministic.

2.5.3.2 Probabilistic Adjustment Factor Approach

The Probabilistic Adjustment Factor Approach (PAFA) [20, 22, 23, 24] is an extension of
the AFA to handle parameter uncertainty. The AFA in the current form is only capable
of dealing with deterministic parameters. If the parameters are considered probabilistic,
the approach needs to be derived again with this assumption. The approach does not
quantify the parameter uncertainty but considers each model output to be represented
with the PDF. It also assumes the distribution of the adjustment factor. Model
probabilities are assumed in the same way as discussed before in the AFA. The adjusted
model Yp in this approach can be calculated as:

Yp = E (y∗) + E∗a. (2.46)

Here, E (y∗) has been used instead of y∗ since the models are considered stochastic. The
first and second moment of the adjustment factor are as follows:

E (E∗a) =
N∑

i=1

P (Mi) (E (Yi)− E (y∗)) , (2.47)

V (E∗a) =
N∑

i=1

P (Mi) (E (Yi)− E (Yp))
2 , (2.48)

where Yi is the prediction of each model considering parameter uncertainty. This leads
to calculate the expected value E (Yp) and variance V (Yp) of the adjusted model as [20]:

E (Yp) = E (y∗) + E (E∗a) , (2.49)

V (Yp) = V (E∗a) +
N∑

i=1

P (Mi) (V (Yi))
2 . (2.50)

Eq. (2.50) represents the combination of model and parametric uncertainty. The
variance of the adjusted model is the sum of variance of the adjustment factor which
is inter-model variance and the variance of each of the individual model which is
intra-model variance. It can also be said that the first term represents the parameter
uncertainty and the second term represents the model framework uncertainty in each
model. The approach in this form considers the output of the model as normally
distributed; however, it is also possible to consider models with other distributions.
In that case, the approach needs to be derived considering that particular distribution
[22].
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Most [21] attempted to include the uncertainty inherent in the reference model selection
to the total uncertainty. Since the sum of model probabilities is one, the following
relations hold:

E (Yp) =
N∑

i=1

P (Mi)E (Yi) , (2.51)

V (Yp) =
N∑

i=1

P (Mi) (E (Yi)− E (Yp))
2 . (2.52)

The contribution of a single model in the total variance [25] is derived as:

Vi (Yp) = E
[
(Yi − E (Yp))

2]

= V (Yi) + [E (Yi)− E (Yp)]
2 (2.53)

where V (Yi) is the variation of a single model as a result of parameter uncertainty.
[E (Yi)− E (Yp)]

2 is the additive model framework uncertainty which is the difference
between the average response of the single model and the average response of the
adjusted model.

In complex engineering problems, E (Yp) may be unknown. Therefore, the best model
Y ref is assumed in place of Yp to calculate total variance of the single model Vi (Yp) as
follows:

Vi (Yp) ≈ V (Yi) + V
(
ε∆i
)

+ V
(
εref
)
, (2.54)

V
(
ε∆i
)

=
[
E (Yi)− E

(
Y ref

)]2
, (2.55)

where ε∆i is the additional framework uncertainty with respect to the reference model
and εref is the uncertainty of the reference model. The modified response of a single
model can be found by introducing a reference model in addition to additive model
framework uncertainty as:

Y M
i ≈ Yi + ε∆i + εref . (2.56)

The relative variation of each model is more important than the overall variation in the
model. The value of εref is not necessary since it is a constant additive term [21] or
different values can be assumed to examine its effect on the total uncertainty of model
prediction. The most suitable model will be one with the smallest value of Vi (Yp). The
choice of V

(
εref
)

affects the total model variance of the single model but does not affect
the ranking of a single model [25]. The method is biased since the model probabilities
are assumed in the beginning and the model adjustment factor is also assumed normally
distributed.

2.6 Summary

The basis of stochastic input parameters and sampling techniques for sensitivity and
uncertainty analyses have been discussed in this chapter. Deterministic as well as
probabilistic methods are explained. Variance based sensitivity analyses have been
described for uncorrelated as well as correlated input parameters. Response surface
approaches are presented to be used for variance based sensitivity and uncertainty
analyses to make the process more efficient. Finally, the procedure is described to
estimate the total uncertainty of the model prediction and ranking the models based on
their total variance.
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Chapter 3

Aerodynamic Phenomena in Long-
span Bridges

3.1 Introduction

The behaviour of long-span cable-supported bridges under wind action is essential to be
studied as a part of the analysis and design. These structures can develop significant
vibrations when exposed to atmospheric wind flow. The increased flexibility makes
these bridges highly sensitive to the wind action, hence aerodynamic performance often
becomes a decisive factor in the design process. The aerodynamic phenomena related to
the design of these bridges are discussed in this chapter.

3.2 Long-span Bridges

The collapse of the Tacoma Narrows Bridge brought much attention to consider wind
effects on long-span bridges. Scanlan [26] and Miyata [27] summarise a brief history of
some developments in the field of bridge aerodynamics after the collapse and explain
how the investigations have helped in the development of experimental and analytical
methods for the prediction of long-span bridge response to wind action. Several examples
of wind-induced bridge failure in the last two centuries are described by Gimsing and
Georgakis [5], Xu [28] whereas Haifan [3], Gimsing and Georgakis [5], Myerscough [29]
explain the history and development of long-span cable-supported bridges around the
world.

With the increased bridge span length, the modern bridge structures are more flexible,
lightweight and their structural characteristics require special treatment of aerodynamic
analysis and design under wind action. Xu [28] lists the top 10 longest suspension
bridges and the top 10 longest cable-stayed bridges in the world as of 2015. Weight [30]
provides an informative and critical analysis of the Great Belt East Bridge in Denmark
which is the third largest suspension bridge in the world. The proposed Messina Bridge
takes the Wind Engineering to its new limits with a main span of 3300 m. There has
been an extensive study made on the configuration of the bridge. An attempt has been
made by Ge and Xiang [31] to introduce the limit of span length for suspension bridge
equation and made an aerodynamic feasibility of a 5000 m span suspension bridge along
with aerodynamic stabilisation. With the rapid growth of China’s economy in the past
couple of decades, more than 200 long-span bridges have been built. Ge and Xiang [32]
provide history and new developments of building bridges in China with the important
structural properties and configurations of some bridges. Some examples of the major
long-span bridges are listed in Table 3.1.

20



CHAPTER 3. AERODYNAMIC PHENOMENA IN LONG- SPAN BRIDGES

Table 3.1: Some well known long-span cable-supported bridges in the world
[3, 33, 34, 35, 36, 37, 38, 39, 40].

Bridge name Country Year built Main span Deck width

[m] [m]

Suspension

Messina Italy Planned 3300 60.4

Akashi-Kaikyo Japan 1998 1991 35.5

Zhejiang Xihoumen China 2008 1650 36.3

Great Belt (Storebælt) Denmark 1998 1624 31.0

Little Belt (Lillebælt) Denmark 1970 600 33.0

Tacoma Narrows USA 1940 854 12.0

H̊alogaland Norway 2017 1145 18.6

Bosporus Turkey 1973 1074 28.0

Runyang China 2005 1490 -

Tsing Ma Hong Kong 1997 1377 -

Humen China 1997 888 -

Cable-stayed

Russky Russia 2012 1104 -

Sutong China 2008 1088 41.0

Stonecutters Hong Kong 2009 1018 53.3

Indiano Italy 1978 189 22.4

Guama Brazil - 320 14.2

Tsurumi Japan 1994 510 38.0

Normandy France 1995 856 23.8

Footbridge

Siena Italy 2006 59.4 3.3

Turin Italy 2003 156 6.9

Kehl-Straßburg Germany-France - 183 6.6

3.3 Aerodynamic Phenomena

Cermak [41] describes Wind Engineering as the rational treatment of the interaction
between the wind in the atmospheric boundary layer and man and his works on
the surface of the earth. The fluctuating nature and the turbulence of the wind
in the atmosphere produce very complex flow fields around structures. Due to flow
separation and reattachment, highly fluctuating pressure fields are generated. Therefore,
the aerodynamic loads are mainly dynamic. Such kind of an ambient load is known
as ‘aerodynamic load’. As a result, structure oscillations and instabilities may occur in
the wind flow which depend not only on the geometry and mechanical properties of the
structure but also on the wind flow characteristics and its mean speed.

The evaluation of wind loading and its effects depends on various interconnected
considerations. Davenport [42, 43] divided the aerodynamic forces of the turbulent wind
into static wind force and the buffeting forces by using statistical tools. The structural
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responses can be divided similarly into a mean value and the oscillations around it.
Figure 3.1 shows Davenport’s wind loading chain which describes the approach to
evaluate aerodynamic loads and wind-induced response of structures.

Wind
climate

Influence
of terrain

Aerodynamic
effects

Dynamic
Effects

Criteria

Wind
load/
response

Figure 3.1: Devenport’s Wind Loading Chain, after [44].

In the case of static phenomena, the divergence, lateral deflection and lateral buckling
are considered. The static behaviour often does not lead to the most critical situation,
whereas the dynamic behaviour is essential and much more critical in case of long-span
cable-supported bridges. The bridge vibrates in its natural modes under the action of
wind. The interaction of the aerodynamic forces and the structural motion is referred
to as aeroelasticity. The motion of the oscillating body in the wind flow produces
self-excited forces and this aeroelastic interaction of the bridge with the wind leads
to instability when the energy input from the fluid exceeds the energy dissipated by
structural damping. The main objective of studying aeroelastic instability is to determine
the wind speed at which it is initiated. It is made sure that this wind speed is not
exceeded during the design life of the bridge with a certain probability.

In general, with the increase in the mean wind speed, static as well as dynamic
structural response will increase [45]. However, in the case of an aeroelastic instability,
the response rapidly increases for even a small increase in the mean wind speed. The
aerodynamic phenomena for long-span bridges, therefore, can be mainly classified into
two groups based on the nature of amplitudes under wind action: limited-amplitude and
divergent-amplitude wind-induced vibrations [41] as shown in Figure 3.2. The former
consists of Buffeting, Vortex-induced Vibrations (VIV), Rain Wind-induced Vibrations
and Wake-induced Vibrations which are related to the serviceable discomfort, increased
internal stresses and may cause fatigue in the bridge structure. The latter comprises
Galloping, Torsional Flutter and Coupled Flutter which can lead to structural instability.
Instabilities resulted from the WSI are known as aerodynamic or aeroelastic instabilities.
The term aeroelastic emphasises the behaviour of deformed bodies, and aerodynamic
emphasises the rigid bodies [4]. Sometimes these two terms are used alternatively. The
oscillation amplitude of the bridge deck can build up until it results in the failure of
the bridge. The collapse of the original Tacoma Narrows Bridge was a result of such
an aeroelastic instability.

3.3.1 Limited Amplitude Phenomena

Limited amplitude phenomena deal with the action of aerodynamic forces on the
structure and the response of the structure as a result of this interaction. With the
action of wind flow on the structure, the flow pattern changes around the structure which
can create oscillations if the structure is flexible. If the oscillations gradually increase,
it could damage the structure. The VIV, buffeting and rain wine-induced vibrations are
examples of such phenomena which are considered in bridge aerodynamics.
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Aerodynamic Phenomena

Limited Amplitude

Buffeting

Vortex-induced Vibrations

Wake-induce Vibration

Rain Wind-induced Vibrations

Divergent Amplitude

Classical Flutter

Galloping

Torsional Flutter

Divergence

Figure 3.2: Aerodynamic phenomena for long-span bridges.

3.3.1.1 Vortex-induced Vibrations

The bluff body embedded in the fluid flow creates vortices behind the body originating
from the separation of the boundary layer. The vortices, shed from the body, are
carried to the downstream side. In the wake, the flow is turbulent but there can be
some pattern in it. This shedding causes unsteadiness in the body perpendicular to
the direction of the flow. The properties of vortex shedding, especially the frequency,
depend on the velocity of flow, the geometry of the body and the fluid viscosity. If
the body has some degree-of-freedom (DOF) with a certain stiffness and is not fixed, it
oscillates in its DOF. When the shedding frequency is close to the natural frequency, the
oscillations of the body take control of the vortex shedding and resonance may occur.
These oscillations are very small if the Strouhal frequency of the alternating pressure
is different to the natural frequency of the body. When these frequencies become the
same, the response of the body starts to increase and the natural frequency of the
body controls the vortex shedding phenomenon. This control of the situation by the
mechanical forces is called Lock-in. The VIV may also be seen in flexible bridges. It
can be avoided by increasing the stiffness or the damping of the structure.

3.3.1.2 Buffeting Response

The body immersed in a fluid flow with some turbulence is subjected to time-dependent
surface pressure which can create oscillations. If these oscillations are due to flow
fluctuations, then this phenomenon is known as ‘buffeting’. The characteristics of natural
wind flow are also not steady. Therefore, buffeting happens as a result of a fluctuating
component of the oncoming wind. It is also possible to happen due to the wake of the
structure on the upstream side and in this case, it is known as wake buffeting. The
study of buffeting response is essential during the design process.
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3.3.2 Divergent Amplitude Phenomena

Dynamically flexible, wind-sensitive structures or long-span bridges oscillate under the
wind action. The motion of the structure generates aerodynamic forces which are known
as motion-induced forces or self-excited forces. The amplitudes of the structure in wind
flow decays if the energy input from the flow is smaller than the energy dissipated
by the mechanical damping. The overall system damping, which is the combination of
structural damping and the aerodynamic damping becomes, negative at very high wind
speeds. If the structural damping is not sufficient to dissipate the energy input by the
wind, the amplitudes of the oscillating body start to grow and diverge exponentially.
The theoretical border between the decaying and diverging motions is known as the
critical condition and the corresponding wind velocity is called the ‘critical wind velocity’.
Below the instability limit, the aerodynamic damping remains positive which helps in
reducing vibrations. Exactly at the boundary, the sum of structural damping and
aerodynamic damping is zero therefore, the structure vibrates in a harmonic motion
with constant amplitudes. The motion-induced forces are insignificant for the short-span
bridges; therefore, there is no concern about aerodynamic instability [46]. The typical
response amplitude of the bridge elements along the increasing wind speed is shown in
Figure 3.3. The turbulence in the flow is usually not considered in the study of some
aeroelastic effects for reasons of simplicity.
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Figure 3.3: Schematic of structural response against wind speed.

3.3.2.1 Classical Flutter

Flutter is a self-feeding aeroelastic phenomenon which is potentially destructive to
long-span cable-supported bridges. The aerodynamic forces generated on the bridge deck
couple with its motion and if the energy input by the aerodynamic forces at high wind
speeds in an oscillation cycle becomes larger than that dissipated by the mechanical
damping of the bridge structural system, the amplitude of vibration will grow. This
increasing vibration will then amplify the aerodynamic forces, resulting in continuously
growing self-excited forces and self-exciting oscillations. If this situation continues for
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some period of time, it can lead to the Ultimate Limit State of the bridge and ultimately
to collapse.

The term classical flutter is originally applied to thin airfoils in the aircraft industry [28].
Classical flutter is an aeroelastic phenomenon in which two-degree-of-freedom (2DOF) of
a structure, torsional motion and vertical bending, couple together in a flow-driven,
unstable oscillation [41]. It is also known as ‘2DOF flutter’, ‘coupled flutter’ or simply
‘flutter’. The critical flutter condition occurs at the wind speed where energy input to
the system is equal to the energy dissipated by the structural damping. The oscillatory
motions of the contributing DOF in the structure couple to create a single frequency
called the flutter frequency as shown in Figure 3.4.
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Figure 3.4: Schematic of structural behaviour along increasing wind speed:
(left) response,
( ) vertical displacement and
( ) rotation,
(right) effective frequency,
( ) bending frequency and
( ) torsional frequency,
(Ucr: flutter limit, ωcr: flutter frequency).

Flutter can happen in both laminar as well as in turbulent flows. When flutter occurs,
the displacements become infinite by the linear theory. Vertical and torsional motion
occur with a phase difference which is essential for the energy transfer from wind to
the structure. The mechanism of energy transfer in case of coupled flutter is described
in Figure 3.5. The flutter phenomena will depend on phase lag or degree-of-coupling
among the modes [46]. The smaller frequency separation between the coupled modes
increases the risk of flutter to occur [48]. The self-excited motion can even cause flutter
on several degrees-of-freedom where higher modes also participate in the phenomenon.

The damping characteristics categorise flutter behaviour of the system into ‘soft flutter’
or ‘hard flutter’. Chen and Kareem [49] studied the rate of change in effective damping
with increasing wind speed, which is related to soft or hard flutter. Hard-type flutter
occurs by the rapid growth of negative aerodynamic damping with increasing wind speed
beyond the flutter limit whereas soft-type flutter happens where the negative damping
builds up slowly with increasing wind speed.

Flutter is destructive in nature with infinitely large amplitudes by the linear aerodynamic
theory. In reality, the aerodynamic nonlinear effects take place which leads to the Limit
Cycle Oscillation (LCO) where amplitudes are limited. This difference is visualised in
Figure 3.6.
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(left) flutter instability and
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3.3.2.2 Galloping

Galloping is a single-degree-of-freedom (SDOF) large-amplitude aeroelastic oscillation
in the transverse direction to wind. It occurs as a result of negative aerodynamic
damping in the cross wind direction. The amplitudes of oscillation can reach up to
many times the section depth. It is sometimes also called as ‘translational galloping’,
‘cross-wind galloping’ or ‘bending flutter’. Galloping is usually experienced by D-shaped
cross section, square section (at zero angle of attack) and circular sections with some
accretion such as ice-coated transmission line or guyed cables. It can also happen for a
bridge with bluff cross section and a lightweight superstructure even for a shorter span.
The cross section with a smaller aspect ratio (width/depth) has a higher tendency to
gallop which is known as ‘soft galloping’ whereas, the deeper sections require initial
perturbation that leads to ‘hard galloping’. The structural natural frequency is much
lower than the vortex shedding frequency. Due to this reason, galloping can be seen as
a low-frequency phenomenon.

Pedestrian bridges, pipe bridges and iced-up cables of power lines are the potential
structures to gallop. Galloping can be classified into two main types: cross-wind
galloping, which generates large amplitude oscillations in a direction normal to the wind
flow, and wake galloping, which happens as a result of the wake shed from a structure
on the upstream side.

Galloping occurs due to change in the effective angle of attack of the vertical or
the torsional motion of the structure. It can be evaluated by checking signs of the
time-averaged static wind coefficients for lift and moment at zero angle of attack. A
negative slope of static lift (or moment) coefficient usually indicates a tendency for
galloping. The negative lift coefficient implies that the section is pushed upward resulting
in a divergent response or galloping [4].

Galloping depends mainly on the quasi-steady behaviour of the structure and therefore
the mechanism of galloping can be explained by the quasi-steady aerodynamic theory.
The analytical solution for Galloping can be obtained from [48]. The difference between
the critical velocity predicted for galloping by the linear and non-linear aerodynamic
theory is insignificant [46]; however, the nonlinear aerodynamic theory also provides
amplitude and frequency. Some studies utilised wind tunnel experiments to explain
different aspects related to understanding the mechanism of galloping of rectangular
cylinders with different aspect ratios [50] and galloping behaviour of Yadagawa Bridge
in Japan [51]. Galloping can be seen as a SDOF instability or a coupled phenomenon.
Earlier, it was studied as a SDOF phenomenon and later, the studies were carried
out on coupling in galloping for coupled torsional and vertical as well as for coupled
translational galloping [41].

3.3.2.3 Torsional Flutter

Torsional flutter is a rotational SDOF aeroelastic instability. It is sometimes also known
as ‘rotational galloping’, ‘torsional galloping’ or ‘stall flutter’ in aeronautical terminology.
The mechanism of torsional flutter is related to aerodynamic damping of rotational
motion. Torsional flutter occurs when the total damping (mechanical and aerodynamic)
of the system in torsional motion becomes zero. The vertical mode of vibration of
a structure has some contribution; however, the torsional action is more critical by far
[46]. It occurs for long-span bridges with bluff deck sections such as H-shape, rectangular
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section with a smaller aspect ratio (width/depth), or truss sections, whereas streamlined
sections are more favourable for the classical flutter.

Blevins and Iwan [52] studied the mechanism of torsional flutter by the linear and
nonlinear forms of quasi-steady theory. Nakamura and Mizota [53], Nakamura [54]
explained the torsional flutter by the theoretical and experimental study as an unsteady
phenomenon. Nakamura [54] also described torsional flutter by performing experimental
forced vibration tests and gave the unsteady aerodynamic lifts and moments. Moreover,
Washizu et al. [55] studied rectangular cylinders with the help of wind tunnel
experiments and highlighted the effect of aspect ratio on the aeroelastic instability
phenomena in the vicinity of the critical speed. The aerodynamic force with the same
frequency as that of Strouhal number has a negative effect and can excite torsional
motion in the deck [56]. Matsumoto et al. [57, 58], Matsumoto [59] described the
torsional flutter mechanism of rectangular and H-shaped sections (Tacoma Narrows
Bridge deck) and investigated the role of vortex excitation and Karman vortex excitation
on the torsional flutter behaviour. Apart from that, the phenomenon of torsional flutter
has been studied by several experimental [60] as well as numerical [40] approaches. The
equations to solve torsional flutter problems can be found in [48]. Torsional flutter
stability improves with the increase in the deck width or torsional frequency [61].

3.3.2.4 Aerostatic Divergence

Static divergence, sometimes also referred to as torsional divergence, is a phenomenon
of loosing torsion stiffness at a relatively high wind speed. It represents a static type
of instability phenomenon that occurs when the total torsional stiffness vanishes, which
is the sum of aerodynamic and structural stiffness and the structure has no oscillations.
The wind flow increases the angle of attack, due to which torsional moment increases by
the increase in the wind velocity. If there is no sufficient torsional resistance available
in the structure, the instability can occur. Divergence problem involves a combination
of torsional divergence and lateral buckling. At a critical wind speed for torsional
divergence, the bridge deck may experience out-of-plane buckling under the action of
a drag force or torsionally diverge under a wind-induced moment that increases with
the increase in geometric twist angle [4]. The torsional divergence wind velocity is
usually higher than the design wind speed. Matsumoto et al. [62] additionally classified
torsional divergence into a static SDOF torsional divergence and a dynamic 2DOF
torsional divergence.

3.4 Counter Measures to Improve Aeroelastic Stability

The design of long-span bridges requires to eliminate the possibility of aeroelastic
instability to occur entirely within the design life. The design should ensure that
the critical flutter limit of the bridge under the worst condition is still higher than
the reference wind speed. Long-span bridge girders can experience unstable flutter
oscillations in very strong winds. The objective of flutter control is to enhance the
critical flutter limit of the bridge by introducing some modification to the structural
system. These modifications can be broadly classified into three main types based on
their function as follows:

(i) Deck shape: changing or modifying deck cross section shape to change the
aerodynamic behaviour which results in reducing aeroelastic forces and increasing
flutter limit,
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(ii) Tuned Mass Damper (TMD): introducing TMD increases the structural damping
which reduces some critical structural mode response under wind action,

(iii) Control flaps: additional wing-like components attached to the section which
sometimes requires external power and to change their relative position or
orientation under structural vibration.

Fujino and Siringoringo [46, 63], Fujino et al. [64, 65] review long-span bridge vibrations
under wind action and also describe some solutions as countermeasures for these
vibrations. Figure 3.7 and Table 3.2 show some countermeasures to improve the
behaviour of a section against flutter. Non-streamlined sections with smaller aspect ratio
are susceptible to galloping. It can be improved by using aerodynamic countermeasures
such as skirts and horizontal plate on the lower side of the cross section [46] which in
turn reduces the wind velocity separated from the lower corner of leading edge of cross
section thus, reducing the self-excitation forces.

Long and slender bridges with bluff sections of large aspect ratios are prone to torsional
and coupled flutter. Low torsional rigidity and aerodynamically unstable girder cross
section are the main factors responsible for torsional flutter which caused the dramatic
collapse of the Tacoma Narrows Bridge. This can be avoided by streamlining the girder
using a closed box section or by using the truss-stiffened girder with increased torsional
rigidity.

Streamline sections with a larger aspect ratio (width/height) are generally prone to
coupled flutter which occurs as a result of large pressure difference between upper and
lower surfaces of the deck. This pressure difference can be reduced using open grating
or central slot to improve behaviour against flutter instability. Several other attachments
can be used to improve flutter stability such as fairings, grating, wind nose, slots, flaps
and spoilers. The torsional flutter stability can be improved by attaching rails to the
bottom of the fairing and vertical plates to the lower flange of the girder [66].

Ge and Xiang [67] studied aerodynamic stabilisation for bridges with a central stabiliser
and adopting twin-box girder. It was found that the limit of span length for a traditional
suspension bridge due to aerodynamic stability can be greatly increased from about
1,500 m up to 5,000 m by using a widely slotted deck or a narrowly slotted deck with
vertical and horizontal stabilisers. Sato et al. [68] confirmed that slotted box girder was
applicable for the super long-span bridge for the reason that it is excellent in economical
efficiency and aerodynamic stability.

The use of a TMD on a long-span bridge has been shown to be promising for reduction
of wind-induced vibration response. The effectiveness of these TMDs have been extended
by changing the design from a single TMD [69] to Multi-Tuned Mass Damper (MTMD)
[70] as well as nonlinear TMDs [71]. Körlin and Starossek [72], Körlin et al. [73]
introduced the rotational mass damper, the movable eccentric mass damper and a mass
damper system with two eccentric rotational actuators for active bridge deck flutter
control. Using the concept of eccentric mass, Phongkumsing et al. [74] presented a
method of suppression of flutter by placing the auxiliary mass on the windward side of
a bridge deck to shift the centre of gravity, and thus, reducing the aerodynamic moment
acting on the deck. Aslan and Starossek [75] presented a passive aeroelastic damper for
long span bridges which consists of a TMD, control surfaces, and a transmission which
couples the movement of the TMD with the control surfaces without the need for an
external energy supply.
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3.4. Counter Measures to Improve Aeroelastic Stability

Table 3.2: Typical aerodynamic countermeasure used for bridge sections against
aeroelastic instabilities, after [46] (cf. Figure 3.7).

Phenomenon Girder type Countermeasure

Galloping deep box low skirts, horizontal plates

Torsional flutter H-section, rectangle with
smaller aspect ratio
(width/height)

fairings

Classical flutter deep truss open grating, vertical stabiliser

streamlined fairing, central slots, curved wind
flaps, wind nose, wind spoilers

Open grating

Vertical
stabilizer

Central slot
FairingFairing

Curved wind flaps

Wind noseWind nose

Wind spoilerWind spoiler

Figure 3.7: Examples of aerodynamic countermeasures for bridge deck against flutter,
after [46, 63] (cf. Table 3.2).
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CHAPTER 3. AERODYNAMIC PHENOMENA IN LONG- SPAN BRIDGES

The aerodynamic-based control method also has been proven to be effective towards the
aerodynamic stability. This method uses control surfaces to generate forces counteracting
the unstable oscillations. Graham et al. [76] used an integrated controllable trailing-edge
flap and Huynh and Thoft-Christensen [77, 78] used separate control flaps to shown
effective increase in the critical flutter limit of the suspension bridge. Phan and Nguyen
[79] focused on a mechanically controlled system using the passive flap control driven by
the motions of the bridge deck. Li et al. [80] presented an active aerodynamic control
method of flutter oscillation comprising of a twin-winglet system which can improve
aerodynamic stability to some extent.

3.5 Summary

The aerodynamic phenomena related to the design of long-span bridges have been
discussed in this chapter. These phenomena are categorised based on the resulting
amplitude of structure as limited or divergent. Special attention is given to aeroelastic
instabilities which are addressed in the following chapters. Some countermeasures are
also discussed to improve the aeroelastic behaviour of long-span bridges.
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Chapter 4

Methods of Aerodynamic Analysis

4.1 Introduction

Arthur Roderick Collar defined aeroelasticity in 1947 as “the study of the mutual
interaction that takes place within the triangle of the inertial, elastic, and aerodynamic
forces acting on structural members exposed to an airstream, and the influence of this
study on design” [81]. The interaction of forces is shown in Figure 4.1.

Elastic

Aerodynamic Inertial

Static
aeroelasticity

Mechanical
vibrations

Dynamic
stability

Dynamic
aeroelasticity

Figure 4.1: Aeroelastic triangle of forces, after [81].

There are three main approaches to deal with the aerodynamic problems:

(i) Experimental methods,

(ii) Analytical methods,

(iii) Numerical methods.

The experimental and analytical methods are used traditionally whereas, with the
development in the field of computers, the numerical approach has become a focus
of attention. This chapter provides a comprehensive review of the methods available
for aerodynamic analysis with more focus on analytical and numerical methods for the
solution of flutter stability problems. Flutter is a coupling of structural motion and
aerodynamic motion-induced forcing and therefore, different structural and aerodynamic
modelling techniques have been discussed here.
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CHAPTER 4. METHODS OF AERODYNAMIC ANALYSIS

4.2 Structural Modelling

Modelling the behaviour of structures by a closed-form analytical solution of the
differential equations is only possible in the simplest cases. Complex structures can be
analysed numerically or by performing experiments on scaled models. Numerical models
can be broadly characterised by their level of structural details, especially in terms
of their ability to account for nonlinear structural effects as well as the applicability
of dimensional reductions. For example in a detailed three-dimensional (3D) model,
many modes of vibration can be considered but dimensional reduction from 3D to
two-dimensional (2D) restricts to consider only two modes. In such a case, the choice
of mode selection may compromise the quality of results. Some common structural
idealisations are summarised here. For detailed description of the topic, the reader is
referred to [45, 82, 83].

4.2.1 Full-DOF Structural Model

The finite element type of idealisation is applicable to both 2D and 3D structures
and provides a convenient and reliable analysis of the system. This method divides
the structure into a number of segments which are connected at the end-points or
nodes. The Finite Element Method (FEM) allows the structures to be described in the
matrix form with stiffness and mass distribution representing the DOF. The generalised
equation of motion is given as

MŸ + CẎ + KY = F , (4.1)

where M, C, K are the mass, damping and stiffness matrices respectively. Y is the
displacement vector and F is the external force vector. This finite element model can
be used to calculate the response of the system under both static and dynamic loading.
Material properties and details of structural geometry are the factors which affect the
quality of the dynamic response prediction.

4.2.2 Mode-generalised Structural Model

A system with continuously distributed mass has an infinite number of DOF. However,
the problem can be simplified by assuming that the masses are concentrated at discrete
points as the inertial forces will develop only at those locations. The number of DOF
will be then equal to the number of displacement components. This approach is effective
for the systems where a major portion of the overall mass can be considered lumped
at discrete points. The solution of a generalised SDOF system in such cases is very
convenient and can be greatly simplified.

The approach describes the displacement amplitudes with the help of mode shapes.
The use of mode shapes is efficient because, with only few mode shapes, necessary
displacements can be described with sufficient accuracy. The accuracy can be increased
by considering more DOF but the greater computational effort would be required. Mode
shapes possess orthogonality properties which may be used to simplify the equations
of motion of a multi-degree-of-freedom (MDOF) system. The MDOF system can be
decomposed to obtain an independent SDOF equation for each mode of vibration. The
equations of motion which are coupled by the off-diagonal terms in the mass and stiffness
matrices can be transformed to independent normal coordinates. Then the dynamic
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4.2. Structural Modelling

response can be obtained by separately solving each equation and then superimposing
the response in the geometric coordinates.

The equation of motion related to time dependent lift forces is expressed in modal
coordinates as follows:

Mφj ÿj + Cφj ẏj + Kφjyj = fL (t) , (4.2)

pre-multiplying with φT
j gives

φT
j Mφj ÿj + φT

j Cφj ẏj + φT
j Kφjyj = φT

j fL (t) , (4.3)

or
φT
j Mφj ÿj + 2ξjωjφ

T
j Mφj ẏj + ω2

jφ
T
j Mφjyj = φT

j fL (t) , (4.4)

where ωj is the modal circular natural frequency, ξj is the modal damping ratio, φj is
the mode shape, the subscript j is the mode number and fL is the lift force vector,
respectively. Assuming a harmonic lift force excitation

fL (t) = fL,0 sin (ωst) , (4.5)

where fL,0 is a constant representing amplitude of harmonic force and ωs is the
oscillation frequency. The equation of motion can be extended to the full length of
the bridge L as

∫

L

φT
j Mφjdxÿj +

∫

L

2ξjωjφ
T
j Mφjdxẏj +

∫

L

ω2
jφ

T
j Mφjdxyj =

∫

L

φT
j fL (t) dx. (4.6)

This expression in Eq. 4.6 is the basis for the pseudo-3D simulation. The necessary
parameters can be defined by computing a 2D representation of the problem. Assuming
that the lift force fL,0 (t) has same shape as that of mode of vibration along the entire
bridge length, the previous expression can be divided by the integral

∫
L
φ2
jdx as

∫
L
φT
j Mφjdx∫
L
φ2
jdx

ÿj + 2ξjωj

∫
L
φT
j Mφjdx∫
L
φ2
jdx

ẏj + ω2
j

∫
L
φT
j Mφjdx∫
L
φ2
jdx

yj = fL (t) , (4.7)

where ∫
L
φT
j Mφjdx∫
L
φ2
jdx

= Mj,2D, (4.8)

is the 2D generalised mass associated to the jth mode shape. The simplified expression
for the 2D case then becomes

Mj,2Dÿj + 2ξjωjMj,2Dẏj + ω2
jMj,2Dyj = fL (t) . (4.9)

This equation of motion represents a SDOF model defined by the vertical displacement
h of the cross section, which is excited by the lift force.

4.2.3 SDOF Model

A SDOF system is the simplest form of structural representation. Under the action of
time dependent force, a SDOF system can be described with the following equation,

mÿ + cẏ + ky = F (t) (4.10)

mÿ + 2ξωmẏ + ω2my = F (t) (4.11)
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with

ω =

√
k

m
and ξ =

c

2mω
(4.12)

where m, c and k are the mass, damping coefficient and stiffness coefficient, respectively.
F (t) is the time dependent force, ω is the natural circular frequency and ξ is the
damping ratio.

4.2.4 Structural Damping

The damping of a MDOF system with N DOF is often expressed in terms of the modal
damping ratios ξn with (n = 1, . . . , N). There are some limitations when this method
of expressing damping ratio can not be used [82] such as:

� non-linear response where the mode shapes are changing with the change in the
stiffness,

� linear system with non-proportional damping.

This requires to define an explicit damping matrix. Rayleigh damping is an alternative
approach to the model damping. The system damping is assumed to be viscous. Further
details about Rayleigh damping can be found in [82]. The damping matrix can be given
by:

C = a0M and C = a1K, (4.13)

where a0 [s−1] and a1 [s] are the mass and stiffness proportional constants, respectively.
Corresponding damping ratios are calculated as:

ξn =
a0

2ωn
and ξn =

a1ωn
2

, (4.14)

where ξn is the damping ratio of the mode n. These expressions show that the damping
ratio is inversely proportional to frequency for mass proportional damping and is directly
proportional to frequency for stiffness proportional damping. The relation of mass and
stiffness proportional damping ratios presented in Eq. (4.14) is shown in Figure 4.2.
A better representation is achieved when the damping is assumed proportional to the
combination of the mass and the stiffness terms as given by

C = a0M + a1K. (4.15)

This leads to the relation between damping ratio and frequencies as follows:

ξn =
a0

2ωn
+
a1ωn

2
. (4.16)

The factors a0 and a1 can be evaluated by associating two specific frequencies ωm and
ωn. Writing Eq. (4.16) for two modes m and n in the matrix form:

{
ξm

ξn

}
=

1

2

[
1/ωm ωm

1/ωn ωn

]{
a0

a1

}
, (4.17)

simultaneous solution results in
{
a0

a1

}
= 2

ωmωn
ω2
n − ω2

m

[
ωn −ωm
−1/ωn 1/ωm

]{
ξm

ξn

}
. (4.18)
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ξ

ωωm ωn

ξ m
ξ n

Figure 4.2: Relation between damping ratio and frequency:
( ) stiffness proportional part, a0 = 0, ξ = a1ω/2,
( ) mass proportional part, a1 = 0, ξ = a0/2ω,
( ) combined.

Assuming same damping ratio for both frequencies i.e. ξ = ξm = ξn, the proportionality
factors can be simplified as:

{
a0

a1

}
=

2ξ

ωm + ωn

{
ωmωn

1

}
. (4.19)

The two modes can be selected which are considered to be participating more in
the response or have sufficient difference between the frequencies. The modes which
have frequencies in-between these two modes will have relatively low damping and will
participate more in the response; however, the modes out of this frequency range will
have very high damping resulting in reduced effect in the overall response.

The limitation of this approach is that it can not be used for a MDOF system as
the modes which are not tuned to correct damping may be distorted by the unsuitable
damping ratios.

4.2.5 Solution Methods

Modal analysis is usually performed first to determine the natural frequencies and mode
shapes necessary for the dynamic response analysis. The essential modes are often
those with the lowest frequencies as they contribute most to the dynamic response.
The structural representations can be dimensionally reduced to 2DOF section models
calibrated from global models or directly MDOF models can be used. This dimensional
reduction from 3D to 2D allows to consider only the important modes; however, selection
of wrong modes may compromise the quality of the results. A numerical time integration
scheme can be used to solve the system under external forces in the time domain. For
this purpose, the Newmark-Beta method [82] may be used. The solution can be made
manually if the number of DOF is small even in the FEM otherwise it is convenient to
solve it by a numerical approach.
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4.3 Aerodynamic Modelling

There are four important actions to induce aerodynamic forces on bluff bodies namely:
static mean wind, vortex-induced excitation, the interaction between the wind and
structural motion and in the case of turbulent inflow conditions additional aerodynamic
force. This will correspondingly result in static mean wind force, vortex-excited
force, motion-induced force and buffeting force, respectively [84]. The motion-induced
forces play the most important role in the bridge aeroelastic stability analysis. The
motion-induced forces result from the interaction between wind forces and the motion of
the oscillating structure. These forces are central to the flutter stability analysis which
involves the coupling of aerodynamic and inertial forces with the elastic structure.

4.3.1 Analytical Models for Flat Plate

Analytical approach is essential in the Wind Engineering to study the complex
phenomenon of Fluid-Structure Interaction (FSI). This method applies simplifications
to a certain extent such as assuming two-dimensionality of the flow but in reality, the
3D effects are present. The closed-form solution is established by making a number of
simplifications for the FSI. The study related to the flutter phenomenon is based on
the classical theory of aeroelasticity within Aeronautical Engineering. This combines the
theories of Fluid Dynamics and Deformable Solid Mechanics (DSM) by employing certain
boundary condition for the FSI. Earliest studies about this phenomenon are made for
aircraft wings in the begging of the 20th century.

The description of the self-excited forces based on a flat plate model of half-chord b
with infinitesimal thickness is the basis of their formulation for bluff bodies. All of the
analytical flat plate models have a set of common assumptions: the fluid is inviscid
and incompressible; the velocity field is irrotational i.e. it is based on the potential
flow and small angles of attack; the strip assumption applies regarding the finite-span
effect. This means that the aerodynamic force at any chord-wise section is the same as
if that section was situated in a two-dimensional flow. Dowell [85], Fung [86], Jurado
and Hernández [87] give extended attention on the flat-plate problems.

A flat plate is considered subjected to a steady laminar flow with a direction rotated
for angle α with respect to the chord of the flat-plate, a lift force and a moment are
acting on the flat plate as shown in Figure 4.3.

U∞ α

eb

B = 2b
b

h

FL

FM

Figure 4.3: Definition of degrees of freedom (heave h and pitch α) and aerodynamic
forces (lift FL and moment FM) for flutter analysis:
( ) undeformed position,
( ) deformed position, (e = 0.5).

Considering a step rotation of the flat plate, a vortex is shed smoothly downstream
from a single point of the trailing edge. The circulation due to this free vortex has its
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counterpart on the flat plate of the same magnitude in order to satisfy zero circulation
condition as assumed in the potential flow theory, which results in a force on the plate.
The strength of the vorticity is time dependent which results in an asymptomatic rise
in the lift force towards the steady state forces. This was initially studied by Wagner
[88] who described the non-stationary lift force as a function of the reduced time by the
so called Wagner indicial function φ(τ) in order to describe the circulatory part of the
unsteady lift and moment:

FL =−ρb2π(
U2
∞
b
α′ +

U2
∞
b2
h′′)

− 2πρbU2
∞

[∫ τ

−∞
φ(τ − τ1)

d

dτ1

(
α(τ1) +

h′(τ1) + 0.5bα′(τ1)

U∞

U∞
b

)
dτ1

]
, (4.20a)

FM =−ρb2π(
U2
∞
2
α′ +

U2
∞
8
α′′)

+ πρb2U2
∞

[∫ τ

−∞
φ(τ − τ1)

d

dτ1

(
α(τ1) +

h′(τ1) + 0.5bα′(τ1)

U∞

U∞
b

)
dτ1

]
, (4.20b)

where ρ is the mass density of the air, b is the half chord (b = B/2), U∞ is the
oncoming wind velocity, τ = 2tU∞/B is the non-dimensional time and the prime is the
differentiation with respect to the non-dimensional time. The inertial part is related
to the additional forces from the apparent mass. The approximation of the Wagner
function by Jones [89] is shown in Figure 4.4a.
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Figure 4.4: (left) Wagner function φ approximation along reduced time, τ = tU∞/b,
(right) real part ( ) F and imaginary part ( ) G of Theodorsen circulation function
along reduced frequency, k = ωU∞/b.

4.3.1.1 Theodorsen Theory

Theodorsen investigated the flutter phenomenon for aircraft wings and gave a very
popular approach for flutter analysis. This approach, on one hand, is independent of
the shape of the body but on the other hand, neglects the effect originating from the
simplification to the flat plate. For a flat plate oscillating harmonically with a certain
frequency, each of the vortices in the wake will influence the forcing on the flat plate
i.e. the forcing will be dependent on the history of the motion or the so-called fluid
memory effect.
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Considering a flat plate subjected to the action of a smooth oncoming flow. Theodorsen
showed from the basic principle of potential flow theory that for thin airfoils in
incompressible flow, the expressions for lift FL and moment FM are linear in
displacement h and rotation α and their first and second derivatives [90]. The theoretical
expressions on a flat plate or an airfoil for sinusoidal oscillating lift FL and moment FM
are as follows:

FL =− ρb2
[
U∞πα̇ + πḧ− πbaα̈

]
− 2πρU∞bC

[
U∞α + ḣ+ b

(
1

2
− a
)
α̇

]
, (4.21a)

FM =− ρb2

[
π

(
1

2
− a
)
U∞bα̇ + πb2

(
1

8
+ a2

)
α̈− aπbḧ

]
(4.21b)

+ 2ρU∞b
2π

(
a+

1

2

)
C

[
U∞α + ḣ+ b

(
1

2
− a
)
α̇

]
,

where the complex function C(k) is the Theodorsen circulation function which depends
on the reduced frequency k, shown in Figure 4.4b, which describes the non-stationary
contribution due to the FSI.

The Eqs. (4.21) are for the unsymmetrical flat plate where a is the distance between
centre of mass and centre of rotation. In the case of symmetrical section, centre of mass
lies in the vertical plane of the centreline. Therefore, a = 0 which gives the equation in
the following form:

FL =− ρb2U∞πα̇− ρb2πḧ− 2πρCU2
∞bα− 2πρCU∞bḣ− 2πρCU∞b

2 1

2
α̇, (4.22a)

FM =− ρb2π
1

2
U∞bα̇− ρb4π

1

8
α̈ + 2ρU∞b

2π
1

2
CU∞α + 2ρU∞b

2πCḣ+ 2ρ
1

2
U∞b

3πCα̇,

(4.22b)

with
C (k) = F (k) + ιG (k) , (4.23)

where F (k) and G(k) are the real and imaginary parts of Theodorsen circulation
function. The relation between real and imaginary parts of Theodorsen circulation
function is shown in Figure 4.5.
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Figure 4.5: Vector diagram of Theodorsen circulation function, after [91].

There exist several representations of Theodorsen circulation function C and some are
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given as follows:

C1 (k) =
H

(2)
1 (k)

H
(2)
1 (k) + ιH

(2)
0 (k)

=
J1 − J1yι

(J1 + Joy)− ι(J1y − Jo)
, (4.24a)

C2 (k) = 1− 0.165k

k − 0.0455ι
− 0.355k

k − 0.3ι
, (4.24b)

C3 (k) =
0.01365 + 0.2808ιk − 0.5k2

0.01365 + 0.3455ιk − k2
, (4.24c)

C4 (k) =
(1 + 10.61ιk)(1 + 1.774ιk)

(1 + 13.51ιk)(1 + 2.745ιk)
, (4.24d)

C5 (k) =
0.015 + 0.3ιk − 0.5k2

0.015 + 0.35ιk − k2
, (4.24e)

C6 (k) =
0.500502k3 + 0.512607k2 + 0.210400k + 0.021573

k3 + 1.035378k2 + 0.251239k + 0.021508

− ι0.000146k3 + 0.122397k2 + 0.327214k + 0.001995

k3 + 2.481481k2 + 0.934530k + 0.089318
, (4.24f)

C7 (k) = 0.99618− 0.16666ιk

ιk + 0.05530
− 0.31190ιk

ιk + 0.28606
. (4.24g)

with

k =
bω

U
=
K

2
(4.25)

where Hi are the Hankel functions, Ji and Jiy are modified Basel functions of first
and second kind, respectively. Eq. (4.24a) can be found in [90][76], Eq. (4.24b) in [92],
Eq. (4.24c)(4.24d)(4.24e) in [22], Eq. (4.24f) in [61] and Eq. (4.24g) in [93]. These
expressions (cf. Eq. (4.24)) are compared in Figure 4.6.

Theodorsen circulation function is unity for the quasi-steady case as the frequency is
zero. There will be no coupling between the equations. The aerodynamic forces lift FL
and moment FM in heave and pitch, greatly depend on the aerodynamic shape of the
section. Therefore, this approach may only be used for approximate flutter analysis.

4.3.2 Semi-empirical Models for Bluff Bodies

The FSI for non-streamlined bluff bodies is a complex phenomenon and analytical models
can not describe motion-induced forces for these sections. This is a consequence of the
flow separation and reattachment which could occur at multiple points on the solid
boundary, and it contradicts the assumption for the shedding of vortices from a single
point. Therefore a significant amount of research has been associated with developing
semi-empirical models dependent on the motion and its time derivatives and empirically
based aerodynamic derivatives. For a 2DOF model the system could be described [91]
generally by:

mḧ+ 2mξhωhḣ+mω2
hh = FL(h, ḣ, ḧ, α, α̇, α̈), (4.26a)

Iα̈ + 2Iξαωαα̇ + Iω2
αα = FM(h, ḣ, ḧ, α, α̇, α̈), (4.26b)

where m and I are the mass and mass moment of inertia, ξh and ξα are the damping
ratios, ωh and ωα are the natural circular frequencies for the heave and pitch direction,
h and α are the vertical displacement and rotation, FL and FM are the lift force and
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Figure 4.6: Comparison of different approximations for Theodorsen circulation functions:
(left) real part,
(right) imaginary part,
( ) C1 Eq. (4.24a),
(◦) C2 Eq. (4.24b),
(�) C3 Eq. (4.24c),
(4) C4 Eq. (4.24d),
(5) C5 Eq. (4.24e),
(×) C6 Eq. (4.24f),
(+) C7 Eq. (4.24g).

moment, respectively. In the case of bridge decks, the apparent mass terms dependent on
the acceleration are usually neglected [94]. Considering a whole structure, the equations
of motion are:

Mẍ (t) + Cẋ (t) + Kx (t) = Fae (t) , (4.27a)

Mẍ (t) + Cẋ (t) + Kx (t) = Caeẋ (t) + Kaeẋ (t) . (4.27b)

The left-hand side of Eq. (4.27) represents structural properties of the bridge deck with
mass M, damping C and stiffness K matrices, whereas the right-hand-side of equations
describe the unsteady motion-induced aerodynamic force which can be divided into
damping related and stiffness related terms. The term motion-induced indicates that
the force acting on the deck not only depends on the instantaneous value but also on
the history of the motion. Even if there is no coupling on the structural part, a coupling
on the aerodynamic side could occur in the aerodynamic damping Cae and aerodynamic
stiffness Kae matrices [4].

Duncan and Frazer [95] first offered 2D form for the flutter equations, followed by
Bleich [96] with a series of publications for truss bridges; however, the major milestone
in bridge flutter was set by Scanlan and Tomko [97] who formulated the problem by
expressing the motion-induced forces based on Theodorsen theory and experimentally
obtained aerodynamic derivatives, the so-called Scanlan derivatives, linearly dependent
on the motion of the structure. Analytical evaluation of aerodynamic derivatives for
bluff sections is not yet possible.

Considering only the first two terms in Taylor series expansion, and ignoring the static
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component, the motion-induced aerodynamic forces as follows:

FL =
∂FL

∂ḣ
ḣ+

∂FL
∂α̇

α̇ +
∂FL
∂α

α +
∂FL
∂h

h, (4.28a)

FM =
∂FM

∂ḣ
ḣ+

∂FM
∂α̇

α̇ +
∂FM
∂α

α +
∂FM
∂h

h. (4.28b)

The aerodynamic forces are the nonlinear functions of vertical displacement and rotation,
and their derivatives; however, assuming at flutter boundary small displacements Scanlan
expressed the self-excited forces in the linearised form.

Scanlan introduced a mathematical framework for expressing the motion-induced
aerodynamic forces on a cross section. As such it is a meta-model. It assumes that
the self-excited lift FL and moment FM for a bluff body may be treated as linear in
displacement h and rotation α and their first derivatives [97] in a linearised form:

FL =
1

2
ρU2
∞B

[
KH∗1

ḣ

U∞
+KH∗2

Bα̇

U∞
+K2H∗3α +K2H∗4

h

B

]
, (4.29a)

FM =
1

2
ρU2
∞B

2

[
KA∗1

ḣ

U∞
+KA∗2

Bα̇

U∞
+K2A∗3α +K2A∗4

h

B

]
, (4.29b)

K =
Bω

U∞
, (4.30)

where ρ is the air density, B is the chord of the airfoil, H∗i and A∗i (i = 1, . . . , 4) are
non-dimensional function of K known as aerodynamic or flutter derivatives which are
associated with self-excited lift and moment, respectively. K is the reduced frequency
and ω is the frequency of bridge oscillation under aerodynamic forcing. As the
aerodynamic derivatives are functions of this frequency, they can only be measured when
the bridge is in an oscillatory state. These are often measured in special wind tunnel
tests but can also be computed from the CFD simulations. Aerodynamic derivatives are
more commonly represented in the normalised form as follows:

H∗1 =
m

ρb2ω
H1, H∗2 =

m

ρb3ω
H2, H∗3 =

m

ρb3ω
H3, (4.31a)

A∗1 =
I

ρb3ω
A1, A∗2 =

I

ρb4ω
A2, A∗3 =

I

ρb4ω
A3, (4.31b)

where Hi and Ai are dimensional aerodynamic derivatives. This ensures that they
are non-dimensional and can be used for any other size of similar deck shape.
Table 4.1 describes the relation of aerodynamic derivatives with the corresponding motion
and forces. For example, H4 represents the aerodynamic stiffness corresponding to
vertical lift force induced by heaving motion displacement, whereas A2 represents the
aerodynamic damping corresponding to torsional moment induced by pitching motion
velocity. Similarly these can be explained as follows:

aerodynamic lift force [FL =

damping terms

...H∗1 ḣ+ ...H∗2 α̇+

stiffness terms

...H∗3α + ...H∗4h, (4.32)

aerodynamic moment [FM = ...A∗1ḣ

heave

+ ...A∗2α̇ + ...A∗3α

pitch

+ ...A∗4h

heave

. (4.33)
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Table 4.1: Description of aerodynamic derivatives:
(�) direct aerodynamic derivatives,
(�) coupled aerodynamic derivatives.
XXXXXXXXXXXXForce

Motion Heave Pitch

ḣ h α̇ α

Lift H∗1 H∗4 H∗2 H∗3
Moment A∗1 A∗4 A∗2 A∗3

Theodorsen functions may also be expressed in terms of aerodynamic derivatives [41].
This gives the aerodynamic derivatives for flat plate based on analytical assumptions as
follows:

H∗1 = −2π

K
F, A∗1 =

π

K
F

(
1

2
+ a

)
,

H∗2 =
−π
2K

[
1 +

4G

K
+ 2

(
1

2
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)
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]
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π
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π
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]
, A∗4 =

−π
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[
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4
+ 2KG

(
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1

2

)]
. (4.34)

For a symmetrical deck section, a = 0 which gives

H∗1 = −2π

K
F, A∗1 =

π

2K
F,

H∗2 =
−π
2K

[
1 +

4G

K
+ F

]
, A∗2 =

−π
2K2

[
K

4
−G− KF

4

]
,
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−π
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2F − GK
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]
, A∗3 =

π
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32
+ F − KG

4

]
,

H∗4 =
π

2

[
1 +

4G

K

]
, A∗4 =

−π
2K

G. (4.35)

Scanlan and Tomko [97] introduced the self-excited forces by using aerodynamic
derivatives obtained from experimental approach.

A 2DOF (heave and pitch) system may be considered to study classical flutter; however,
the bridge deck in an actual case has lateral movement as shown in Figure 4.7. The
equation of motions for the whole system can be written as

Mẍ (t) + Cẋ (t) + Kx (t) = Fae (t) + Fb (t) , (4.36)

where Fb are the buffeting forces which can be defined as

FD =
1

2
ρU2
∞B

[
2CDχDu

u(t)

U∞
+ (C ′D − CL)χDw

w(t)

U∞

]
, (4.37a)

FL =
1

2
ρU2
∞B

[
2CLχLu

u(t)

U∞
+ (C ′L + CD)χLw

w(t)

U∞

]
, (4.37b)

FM =
1

2
ρU2
∞B

2

[
2CMχMu

u(t)

U∞
+ C ′MχMw

w(t)

U∞

]
, (4.37c)
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where u(t), w(t) are the fluctuating components of wind speed in the along wind and
across wind direction, respectively. χDu, χLu and χMu are the aerodynamic admittance
coefficients in three directions. For laminar flow there will be no buffeting forces i.e.
Fb = 0 which leads to the following:

Mẍ (t) + Cẋ (t) + Kx (t) = Fae (t) , (4.38a)

Mẍ (t) + Cẋ (t) + Kx (t) = Caeẋ (t) + Kaeẋ (t) , (4.38b)

where Fae = [ FD FL FM ]T. Cae is the aerodynamic damping matrix and Kae is the
aerodynamic stiffness matrix.

The full expression of Scanlan’s model is expressed as linear function of the motion
considered in Theodorsen theory in terms of aerodynamic derivatives as

FL =
1

2
ρU2
∞B

[
KH∗1

ḣ

U∞
+KH∗2

Bα̇

U∞
+K2H∗3α +K2H∗4

h

B
+KH∗5

ṗ

U∞
+K2H∗6

p

B

]
, (4.39a)

FM =
1

2
ρU2
∞B

2

[
KA∗1

ḣ

U∞
+KA∗2

Bα̇

U∞
+K2A∗3α +K2A∗4

h

B
+KA∗5

ṗ

U∞
+KA∗6

p

B

]
, (4.39b)

FD =
1

2
ρU2
∞B

[
KP ∗1

ṗ

U∞
+KP ∗2

Bα̇

U∞
+K2P ∗3α +K2P ∗4

p

B
+KP ∗5

ḣ

U∞
+K2P ∗6

h

B

]
, (4.39c)

where FD is the aerodynamic drag force on the section, H∗i , A∗i and P ∗i (i=1...6)
are the aerodynamic derivatives, ṗ and p are the horizontal velocity and displacement,
respectively. These aerodynamic derivatives for bluff sections cannot be computed
analytically, however, it is possible to obtain them by experimental wind tunnel tests or
through the CFD simulations which are discussed in Section 4.4.

U∞
h

α

p

FD

FL

FM

B

D

Figure 4.7: Definition of degrees-of-freedom and aerodynamic forces for flutter analysis
of bluff sections.

Scanlan’s model has been widely used for the solution of 2D and 3D aeroelastic
instability problems in the field of bridge aerodynamics due to its applications to
different types of bridge cross sections. The motion-induced aerodynamic forces are
based on two assumptions [98]. Firstly, the displacement of structure follow harmonic
vibration and is represented by 18 aerodynamic derivatives neglecting the apparent mass
for the acceleration term. Secondly, if the motion-induced forces are considered to have
a nonlinear relationship with structural motion, then these expressions would include the
second-order or even high-order terms of the structural motion.

Scanlan and Tomko [97] initially studied free vibration method to identify aerodynamic
derivatives (H∗i , A∗i with i = 1, . . . , 3) by using experiments for 5 different deck shapes
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and studied the effect of the change in depth of H-shape section. The reason for using
3 aerodynamic derivatives was the direct relationship with the flat-plate theory which is
based only on vertical motion, angular rotation and angular velocity in the circulatory
terms. Scanlan [99, 100] utilised (H∗i , A∗i , P

∗
i with i = 1, . . . , 3) aerodynamic derivatives

for the linear dynamic analysis bridges having lateral vibration modes along with the
energy considerations involved in the assessment of aerodynamic stability. Jain et al.
[101, 102] made use of all 6 P ∗i (with i = 1, . . . , 6) aerodynamic derivatives in the
aerodynamic analysis.

4.3.2.1 Utilisation of Aerodynamic Derivatives

The aeroelastic instability of bridge depends greatly on the magnitudes and signs of some
of the aerodynamic derivatives of the deck cross section. The aerodynamic derivatives
can be used for preliminary examination of aeroelastic instability. The terms on the
right-hand-side of the Eq. (4.29) can be separated into damping terms (associated
with the velocity of motion) and stiffness terms (associated with the displacement
of motion). The effect of the change in the damping related forces is considered
to be more important and the effect of the change in the stiffness related forces is
often insignificant for aeroelastic instability. The aerodynamic derivative related to
velocity-proportional forces describes the aerodynamic damping of that DOF and the
positive sign of this derivative indicates negative aerodynamic damping. The SDOF
mechanism of aerodynamic instability is related to occurrence of negative aerodynamic
damping. The aerodynamic derivative H∗1 , which is the aeroelastic lift force induced as
a result of heave velocity, controls the vertical flutter and the aerodynamic derivative
A∗2, which is the aeroelastic moment induced as a result of pitch velocity, governs
the torsional flutter instability. The flutter phenomenon is related to the negative
aerodynamic damping whereas negative stiffness creates divergence.

In the case of a flat plate for SDOF instability, considering pure bending motion
(cf. Eq. (4.29a)), the negative values of H∗1 < 0 and H∗4 < 0 will increase the overall
system damping and stiffness, respectively. If the magnitude of the negative aerodynamic
damping becomes greater than the structural damping, the amplitudes of oscillations
will grow and aeroelastic instability will occur which happens usually for deep sections.
Similarly, considering pure torsional motion (cf. Eq. (4.29b)), where A∗2 < 0 and A∗3 > 0
the overall system damping will increase and overall system stiffness will decrease. So it
is unlikely for SDOF instability to occur and more likely to occur 2DOF flutter [103].

Table 4.2 presents some guidelines for the assessment of aeroelastic instability from
aerodynamic derivatives of different sections. The derivatives H∗4 and A∗3 tend to increase
vertical stiffness and reduce torsional stiffness. For streamlined sections, −H∗3 and A∗4
feed energy into structural vibration whereas aerodynamic damping terms H∗1 and A∗2
extract energy. Phase difference for streamline sections is 180◦ and the system is less
dependent on structural damping [48]. Coupled flutter can still occur even if A∗2 and
H∗1 are positive. Trein and Shirato [104] reviewed the roles of aerodynamic derivatives
in flutter stabilisation and pointed out some conditions that the unsteady pressure
characteristics should present in flutter stabilisation.

If the instability limit exceeds the design wind speed of the site at the deck height
(suitably factored for ultimate limit states), then modifications are required to be made
to the deck cross-section in order to avoid the occurrence of aeroelastic instability.
Section modifications can be made to avoid the positive (H∗1 , A∗2) aerodynamic
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Table 4.2: Types of aerodynamic instabilities, after [2, 5].

Phenomenon Conditions Type of motion Type of section

Galloping H∗1>0 Translational D-shape, square section, deep
sections

Torsional flutter A∗2>0 Rotational H-section, rectangle with
smaller aspect ratio
(width/depth)

Classical flutter H∗2>0, A∗1>0 Coupled flat plate, airfoils

derivatives [4]. Matsumoto [105] studied to stabilise flutter of long-span bridges by
reduction of A∗2 through suitably combining deck section with (A∗1 > 0, A∗2 < 0) and
(A∗1 < 0, A∗2 > 0).

4.3.2.2 Scanlan Equivalent Representations

In the field of bridge aerodynamics, the comparison of aerodynamic characteristics
utilising the aerodynamic derivatives is a common and widely accepted approach. Various
conventions have been developed and are used based on the same assumptions as
Scanlan’s. The earliest ones are developed by Miyata et al. [106]. Zasso [107] gave a
representation of the motion-induced forces with the advantage of the better description
in the low-frequency range where Scanlan’s tend to become zero.

The aerodynamic derivatives (H∗i , A∗i ) are the real and the imaginary parts of
the transfer functions between the non-dimensional forces and the non-dimensional
displacements. Motion-induced aerodynamic forces are mathematically described in real
number or complex number expressions and the flutter analysis performed using either
of these lead to the same numerical results.

Based on the analytical theory of Theodorsen, Starossek [61] introduced a modified
theory following the complex number approach. This also allows the use of aerodynamic
derivatives computed by experimental or numerical methods. The advantage in the
solution method is by solving a linear eigenvalue problem by which the complex flutter
mode shape is obtained without additional effort. This approach is more popular
among the researchers concerned with the aerofoils and aircraft flutter analysis. Some
computational and programming benefits are highlighted in [108] by comparing real and
complex number descriptions of the same mechanical phenomena. For more elaborate
information on complex notation, the reader is referred to [61, 108, 109, 110, 111].

The aerodynamic forces can be expressed in the following linearised form:

FL = ω2πρb2 (chhh+ bchαα) , (4.40a)

FM = ω2πρb2
(
bcαhh+ b2cααα

)
(4.40b)

where cmn are the dimensionless complex force coefficients or derivatives which are the
functions of reduced frequency k with

cmn = c′mn + ιc′′mn (4.41)

where c′mn and c′′mn are the real and imaginary parts respectively. The real part is
related to the component of the aerodynamic force that corresponds to the structural
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displacement and the imaginary part is related to the velocity as shown in Figure 4.8.
The first subscript m describes the direction of force and the second subscript n is
related to the motion causing the force. These 4 coefficients describe the relationship
between motion and the self-excited forces. The components c′hh, c

′′
hh, c

′
αh and c′′αh are

computed from a forced heave simulation whereas c′hα, c′′hα, c′αα and c′′αα are computed
from a forced pitch simulation.

Im

Re

cmm

c′mm

c′
′ m
m

Fm(t)

hm(t)

Figure 4.8: Motion and corresponding force representation in complex plane.

The relationship between real and complex notations can be established by comparing
the corresponding aerodynamic force and moment expressions i.e. Eq. (4.29a) with
Eq. (4.40a) and Eq. (4.29b) with Eq. (4.40b). Both the real and the complex notations
have the same theoretical background. The relations are given in Table 4.3 and are as
follows:

chh ∼= 2
π

(H∗4 + ιH∗1 ) , chα ∼= 4
π

(H∗3 + ιH∗2 ) ,

cαh ∼= 4
π

(A∗4 + ιA∗1) , cαα ∼= 8
π

(A∗3 + ιA∗2) .
(4.42)

In the aerodynamic study for the Normandy Bridge in France, a so-called Küssner
notation was used, with the aerodynamic derivatives known as Küssner coefficients (kai ,
kbi , m

a
i , m

a
i with i = 1, 2) [112]. Zasso [107], Borri and Höffer [113] summarised some

of these conventions and highlighted their merits and demerits. Jensen [114] compared
Scanlan’s derivatives with the ones developed for Marine Engineering usage based on the
relative position of the bridge deck utilising the velocity and acceleration terms. Some
of these conventions are summarised in Table 4.3.

Table 4.3: Conversion between the notations of the aerodynamic derivatives by Scanlan,
Starossek, Küssner, Zasso and Jensen.

Scanlan H∗4 H∗1 A∗4 A∗1 H∗3 H∗2 A∗3 A∗2

Starossek π
2
c′hh

π
2
c′′hh

π
4
c′αh

π
4
c′′αh

π
4
c′hα

π
4
c′′hα

π
8
c′αα

π
8
c′′αα

Küssner −v2r
2π
ka1

−v2r
2π
ka2

−v2r
4π
ma

1
−v2r
4π
ma

2
−v2r
4π
kb1

−v2r
4π
kb2

−v2r
8π
mb

1
−v2r
8π
mb

2

Zasso π
2
h∗4

−vr
2π
h∗1

π
2
a∗4

−vr
2π
a∗1

v2r
4π2h

∗
3

−vr
2π
h∗2

v2r
4π2a

∗
3

−vr
2π
a∗2

Jensen −Y ′ṙ Y ′v
1
K
−N ′ṙ N ′v

1
K

−
(
Y ′ṙ + Y ′v

1
K2

) (
Y ′r − Y ′v̇

)
1
K

−
(
N ′ṙ +N ′v

1
K2

) (
N ′r −N ′v̇

)
1
K

4.3.2.3 Quasi-steady Representations

The quasi-steady theory describes the aerodynamic forces without consideration of the
fluid memory by mapping the instantaneous status of the system at the current time
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into the corresponding status at the infinite time, such that the wake has convected
far from the body for evaluating the flow-induced forces. In addition to these forces,
there are apparent mass forces due to the inertial effect related to the portion of fluid
surrounding the body that moves with it which are not associated with the creation of
vorticity and are of minor importance in the coupled flutter and are usually neglected
[86].

The quasi-steady theory for bluff bodies essentially does not differ from the one for
flat-plate. The theoretical values for the slopes of the lift C ′L and moment C ′M coefficients
are 2π and π/2, respectively. As discussed previously, this model does not consider
the fluid memory effect; however, it offers a static nonlinear relationship between the
instantaneous angle of attack and the flow-induced forces. Table 4.4 shows the relation
between Scanlan’s representation and quasi-steady theory for a selected reduced velocity.

Table 4.4: Conversion between the notations of the aerodynamic derivatives by Scanlan
and corrected quasi-steady theory.

Scanlan H∗1 H∗2 H∗3 H∗4 A∗1 A∗2 A∗3 A∗4
Quasi-steady −(C′L+CD) vr

2π
−(C′L+CD)mL

vr
2π

C′L
v2r

(2π)2
−2CL

vr
2π
−C′M

vr
2π

C′MmM
vr
2π
C′L

v2r
(2π)2

−2CM
vr
2π

4.3.3 Numerical Methods

The aerodynamic behaviour for the design of long-span bridges is traditionally studied
through wind tunnel tests; however, these tests are cost-expensive and require time
for planning, actual testing and may be restrictive at the design stage. Even a small
modification sometimes requires to build a new model. The CFD has gained much
attention and development in the last decades and is used as an alternative beside the
analytical and experimental methods; however, it still has limitations with the complexity
and nature of 3D bridge structures [115]. Blocken [116] provided a perspective on the
past, present and future of Computational Wind Engineering (CWE).

The CFD is more accessible than Wind Tunnel Tests (WTT) for the aerodynamic
analysis of bridge deck geometry and checking the performance of structure [32]. It
allows simultaneous force coefficients, pressure distributions, structural response and flow
visualisation which is very useful in understanding the FSI mechanism that is important
for wind-induced vibrations [51]. The common methods used for flow discretisation
include the Finite Volume Method (FVM), Finite Element Method (FEM) and Discrete
Vortex Method (DVM) where the first two are Eulerian mesh-based and the third is
Langrangian mesh-free. This further requires a turbulence model for the closure of
the Navier-Stokes equations. In general, there are three primary numerical models
to simulate flow turbulence: Reynolds-Averaged Navier-Stokes (RANS), Large Eddy
Simulation (LES) and Detached Eddy Simulation (DES) [84]. Table A.1, A.2 and A.3
summarises different CFD approaches used to study aerodynamic behaviour of long-span
bridges.

The accuracy of results from the CFD approach not only depends on the quality of
the solver but also on the modelling itself. Therefore, the selection of the boundary
conditions, grid refinement and time discretisation is also important. The numerical
method must be reliable and robust to be used in place of WTT. The accuracy of
the results depends on modelling errors, discretisation errors as well as iteration errors.
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Such errors which are coming from inaccurate modelling assumptions and discretisation
can only be detected by comparison with the experimental results.

4.3.3.1 Vortex Particle Method

The CFD simulations based on the vortex method has gained much attention in the
1990s to be used in the field of bridge aerodynamics. The success of the simulations
is attributed to the bluff nature of the cross-sections and to the two-dimensional (2D)
nature of flow around bridge decks [117]. Walther [118] developed a 2D-DVM to simulate
flow past bluff bodies. It considers two-dimensional slightly viscous incompressible flow
(constant density) which has the advantage in its 2D nature of flow around bluff
bodies. This allows to compute static wind coefficients, Strouhal number, aerodynamic
derivatives and critical flutter limits which are essential for aeroelastic analyses of a
bridge [117, 119]. It has been used to study flow around flat plate as well as other bluff
bridge deck cross sections to show the applicability and efficiency of the method and
to help understanding mechanisms related to the phenomena of aeroelastic instability
[120, 121, 122, 123, 124, 125, 126, 127].

The Vortex Particle Method (VPM) uses a grid-free Lagrangian formulation which has
the advantage of high numerical efficiency and can be applied to complex structural
geometries. This provides an alternative to classical Eulerian methods which are used
in the finite volume approaches. For further information and comprehensive reviews on
the VPM the reader is referred to the publications by [122, 123, 128].

Here, the Navier-Stokes equations are solved with the help of particles considering the
equations of an incompressible and temperature-insensitive fluid without external volume
forces. This allows a grid-less numerical scheme where the boundary of the modelled
section is discretised into small panels and the vorticity is discretised on the boundary
of the body using the boundary element method. The velocity field is required to be
determined to evolve the flow. The pressure is computed on the body surface with the
neighbouring velocity and the integration of pressure provides forces. The structure of
the bridge is assumed to have a rigid cross-section and can be suspended on springs
with its dynamic properties. The ‘no-slip condition’ is applied which means that the
velocity at the surface of the panels is zero. Additionally, if the section is moving, the
relative velocity of the section is also taken into account for flow velocity computation.
The integrated pressures represent the global section forces in terms of lift, drag and
moment.

4.3.4 Experimental Methods

Experimental methods are considered the most accurate as compared to the other
methods. The approaches being used currently to study the aerodynamic behaviour
of suspended span bridges include full-scale monitoring and wind tunnel testing [41].

4.3.4.1 Full-scale Monitoring

Wind tunnel tests are the basis for analysis and design of long-span bridges. However,
small-scale experiments have limitations in predicting the full-scale behaviour due to
scale effects such as Reynolds number and the structural damping. These modelling
parameters can only be validated through full-scale measurements which is crucial
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for bridge aerodynamics. Full-scale measurements are seldom performed for long-span
bridges. Frandsen [129] utilised full-scale measurements on the Great Belt suspension
bridge and provides several other references of full-scale measurements on different
bridges around the world. Moreover, full-scale measurements have been used to validate
the analytical response prediction [130] and to extract aerodynamic derivatives [131].
The full-scale aeroelastic behaviour of bridges is still not completely understood and is
an active research topic.

4.3.4.2 Wind Tunnel Testing

The tests in the wind tunnel are commonly carried out either on section models,
taut-strip models or full aeroelastic models. These methods are considered relatively
accurate as compared to the other methods (analytical and numerical); however, such
tests are expensive and cannot reproduce fully the physics of the full-scale problem.
These tests require scaled models representing the structure by ensuring certain similarity
laws. In these tests, the models are not only geometrically similar but reduced frequency,
mass and stiffness distribution also satisfy the similarity requirements. The major
drawback of boundary layer wind tunnel testing is that often sufficient structural details
cannot be reproduced and fluid flow can have some scaling errors. Wind tunnel test for
Akashi Kaikyo Bridge [132] and Great Belt East Bridge [133] are notable examples of
3D aeroelastic bridge models. Moreover, Sato et al. [68] and Yoshizumi and Inoue [134]
describe 2D and 3D flutter analysis of full aeroelastic model test for long-span bridges.

Section models are more commonly used for defining static wind loads [135] and
measuring aerodynamic derivatives of the section. These tests include the free or forced
vibration tests of 2D sectional models. Often section models are made for economic
reasons and only the first vertical and the first torsional modes are studied. The
cross section of the bridge deck is modelled using springs at the ends tuned to natural
frequencies of the selected modes. These tests are also useful to study the aeroelastic
instability characteristics of the deck by making use of the results from wind tunnel
experiments on dynamically mounted section models. Table A.4 provides some examples
of wind tunnel tests performed on different structures.

Several parameters are determined from section models of decks through wind tunnel
testing such as static wind coefficients, aerodynamic derivatives and Strouhal number
etc. Static wind coefficients are defined as:

CD =
FD

1
2
U2
∞B

(4.43)

CL =
FL

1
2
U2
∞B

(4.44)

CM =
FM

1
2
U2
∞B

2
(4.45)

where, CD, CL and CM are the coefficients of drag, lift and moment, respectively. FD,
FL and FM are the time averaged drag force, lift and moment, respectively. If Ns is
the primary frequency of vortex shedding generated by the static bluff body, then the
Strouhal number is given by

St =
NsD

U∞
(4.46)
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where, St is the Strouhal number depending on the geometry of the body, D is the
across wind dimension of the body.

4.4 Extraction of Aerodynamic Derivatives

4.4.1 Free and Forced Vibration Techniques

The aerodynamic unsteady forces or motion-induced forces are assumed to be related to
the aerodynamic derivatives and their linear combination of displacements and their
first time derivatives. There are two main approaches [28, 91] to determine the
aerodynamic derivatives for a section. First with direct measurements of aerodynamic
force components by strain measurements on a sectional model when the section is given
some forcing [57] and second to calculate the force indirectly by measuring unsteady
surface pressure and phase difference from the flow-induced motion of the model [97].
The direct measurements require usually more complex experimental set-ups.

The motion of the structure in the flow induces aerodynamic forces which are
characterised by aerodynamic derivatives. These aerodynamic derivatives describe the
aerodynamic behaviour of the oscillating deck and are commonly measured from wind
tunnel tests by using different methods such as free vibration, forced vibration and
buffeting tests. In forced vibration tests the scaled deck section is forced to move with
specific displacement and velocities (or angular rotations and angular velocities) and
the aerodynamic forces are measured from which aerodynamic derivatives are extracted.
Free vibration tests are more common where the decay in the system damping and
the change in system stiffness is measured when a deck section model is given some
initial displacement. The buffeting tests are simple but the measurements are needed
to be treated to remove buffeting forces considering as noises which require more
advanced system identification techniques. Some wind tunnel tests performed for different
structures are summarised in Table A.4 using free, forced and buffeting approaches to
compute aerodynamic derivatives.

The classical forced vibration tests are conducted on decoupled motions to compute
aerodynamic derivatives; however, this decoupled motion generates the derivatives
where the direct components of aeroelastic motions are dominant than the interactive
components [136]. In addition to this, coupled forced vibration techniques are also
used to determine aerodynamic derivatives [137, 138, 139, 140]. Table A.5 presents
some examples of forced vibration analyses on different structures and corresponding
displacement amplitude used.

The recommended values of amplitudes of motion are ho = 0.05B and αo = 5◦. Walther
[118] also suggested the amplitudes of the vertical and rotational motion for forced
oscillation simulations as

ho <
1

ω

√
2ν

4t =
B

2π

(
vr
U∞

)√
2ν

4t , (4.47a)

αo <
1

ω

√
8ν

4t =
B

2π

(
vr
U∞

)√
8ν

4t , (4.47b)

where ω is the oscillation frequency, ν is the kinematic viscosity and ∆t is the time
step, respectively.
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4.4.2 Meta Model Calibration

The determination of flutter limit for a structural system requires a set of aerodynamic
derivatives. These aerodynamic derivatives can be obtained by performing forced
vibration wind tunnel tests or CFD simulations. For this purpose, the section is forced
to oscillate harmonically in its heave [h = ho sin(ωt)] or pitch [α = αo sin(ωt)] DOF with
constant amplitude. Eqs. (4.29a) and (4.29b) (with α = 0) thus constitutes a system of
equations for heave motion as

FL =
1

2
ρU2
∞B

[
KH∗1

ḣ

U∞
+K2H∗4

h

B

]
, (4.48a)

FM =
1

2
ρU2
∞B

2

[
KA∗1

ḣ

U∞
+K2A∗4

h

B

]
. (4.48b)

Separately performing these tests give the time histories for lift F̄L and moment F̄M
corresponding to known displacement traces h or α. Thus Eqs. (4.48a) and (4.48a) take
the form

F̄L = CL
hH

∗
h, (4.49a)

F̄M = CM
h A

∗
h, (4.49b)

where

CL
h =

1

2
ρU2
∞BK

[
ḣ
U∞

K h
B

]
, (4.50)

and
CM
h = BCL

h , (4.51)

also

H∗h =

{
H∗1
H∗4

}
, A∗h =

{
A∗1
A∗4

}
. (4.52)

System (4.49a) and (4.49b) can be solved in the least-squares sense by left-multiplying
with the C matrix:

CLT

h F̄L = CLT

h CL
hH

∗
h, (4.53a)

CMT

h F̄M = CMT

h CM
h A

∗
h. (4.53b)

Similarly, the procedure can be repeated for the pure pitch case (h = 0), the equations
will become

FL =
1

2
ρU2
∞B

[
KH∗2

Bα̇

U∞
+K2H∗3α

]
, (4.54a)

FM =
1

2
ρU2
∞B

2

[
KA∗2

Bα̇

U∞
+K2A∗3α

]
. (4.54b)

Heave and pitch motions are performed separately in forced vibration simulations to
obtain aerodynamic derivatives as shown in Figure 4.9.

This gives two sets of aerodynamic derivatives in a least-squares sense. The same can
be repeated for pitch case (with h = 0). The procedure to calculate these aerodynamic
derivatives is summarised as follows:
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B

B

h(t)

α(t)

To

To

U∞

U∞

0

0

Figure 4.9: Schematic of forced vibration simulation:
(top) forced heave motion,
(bottom) forced pitch motion.

� impose forced vibration motion either in heave (h) or pitch (α) on the cross,

� extract the lift and moment time traces,

� calculate a best-fit harmonic of the same forcing frequency,

� obtain lift or moment coefficient and phase shift,

� calculate the required aerodynamic derivatives.

Figure 4.10 shows a schematic of forced vibration simulation for lift coefficient (CL)
and moment coefficient (CM) time traces where least-square fit is performed to calculate
aerodynamic derivatives. Two separate simulations in heave and pitch DOF are required
to be performed to get one set of aerodynamic derivatives at a given reduced speed vr
which is defined as

vr =
2πU∞
bω

=
2π

K
. (4.55)

Alternatively, the procedure can be followed explained in [141]. The section is assumed
to oscillate harmonically in heave [h = hoe

(ιωt)] or pitch [α = αoe
(ιωt)] DOF. The

aerodynamic forces will have same harmonic frequency ω but with a phase shift ϕ.
The Eqs. (4.29) can be written as:

CLe
ι(ωt−ϕ) = 2K2

[
(ιH∗1 +H∗4 )

h

B
+ (ιH∗2 +H∗3 )α

]
e(ιωt), (4.56a)

CMe
ι(ωt−ϕ) = 2K2

[
(ιA∗1 + A∗4)

h

B
+ (ιA∗2 + A∗3)α

]
e(ιωt). (4.56b)

Dividing the above equation with e(ιωt) and replacing e(ιϕ) by (cosϕ− ι sinϕ)
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Figure 4.10: Forced oscillation simulations: lest-square fitting to calculate aerodynamic
derivatives from
(left) lift coefficient CL time traces,
(right) moment coefficient CM time traces.
( ) forced displacement h/B and rotation α,
( ) measured lift and moment,
( ) least-squares fit on lift and moment.
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Figure 4.11: Schematic of harmonic oscillation.
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(cf. Figure 4.11) will give the following set of equations:

H∗1 = −
(
U∞
Bfo

)2
CL sinϕL−h

(2π)2 ho/B
, H∗2 = −

(
U∞
Bfo

)2
CL sinϕL−α

(2π)2 αo
,

H∗3 =

(
U∞
Bfo

)2
CL cosϕL−α

(2π)2 αo
, H∗4 =

(
U∞
Bfo

)2
CL cosϕL−h

(2π)2 ho/B
,

A∗1 = −
(
U∞
Bfo

)2
CM sinϕM−h

(2π)2 ho/B
, A∗2 = −

(
U∞
Bfo

)2
CM sinϕM−α

(2π)2 αo
,

A∗3 =

(
U∞
Bfo

)2
CM cosϕM−α

(2π)2 αo
, A∗4 =

(
U∞
Bfo

)2
CM cosϕM−h

(2π)2 ho/B
,

(4.57)

where fo = 1/To is the frequency of harmonic oscillation.

4.5 Summary

This chapter provides a description of methods of aerodynamic analysis with a special
focus on analytical and numerical methods. The approaches to model the motion-induced
aerodynamic forces have been presented. For this purpose, Theodorsen expressions for
motion-induced aerodynamic forces based on potential flow and Scanlan’s aerodynamic
derivatives as meta-model have been used. Finally, a procedure to calculate aerodynamic
derivatives from forced vibration simulations is explained. This comprehensive review
provides fundamentals for model combinations for flutter analysis which are further
elaborated in Chapter 5.
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Chapter 5

Models for Flutter Analysis

5.1 Introduction

The main objective of studying flutter phenomena is to find the instability limit which
is also known as flutter limit or flutter wind speed. It is important to make sure in the
design process that this wind speed is not exceeded during the design life of the bridge.
Therefore, an accurate prediction of flutter boundary is essential. This chapter provides
different model combinations to perform flutter analysis. For this purpose, analytical
and numerical methods have been utilised. The aerodynamic and structural models are
combined in different ways and the procedure to implement these models is described in
detail. The assumptions made at each step are specified and their effects on the model
predictions are highlighted. The advantages and limitations of each model combination
are discussed within this chapter.

5.2 Coupled Models for Flutter Analysis

Flutter is a coupling of aerodynamic forcing with a structural dynamics problem.
Therefore, different types and classes of models can be combined to study the interaction.
In this study, both numerical approaches and analytical models are utilised and coupled
in different ways to calculate the flutter limit from the hybrid model. This has allowed
to investigate a very broad range of model combinations and to study their merits and
drawbacks.

The flutter analysis is generally performed through complex eigenvalue solution. The
analytical approach is being conducted predominantly in the frequency domain. This is
mainly due to the computational efficiency offered by the frequency domain, especially
when handling the aerodynamic forces that are functions of the oscillation frequency.
Here, both the frequency and time domain approaches have been utilised to study the
comparison.

Models for aerodynamic forces employed are the analytical Theodorsen expressions for
the motion-induced aerodynamic forces of a flat plate and Scanlan derivatives as a
Meta-model. Further, CFD simulations using the VPM are used to cover numerical
models. The structural representations are dimensionally reduced to 2DOF section
models calibrated from global models as well as multi-degree of freedom models. A
2DOF system is analysed analytically as well as numerically. The model combinations
used in this study are summarised in Table 5.1.
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Table 5.1: Model combinations for flutter analysis used in this study:
(◦) regular model,
(•) meta-model.
``````````````̀Structural

Aerodynamic
Analytical Numerical

Analytical

◦ Model#1

-

◦ Model#2

Model#3

◦ •

Numerical

Model#4

◦ •

- ◦ Model#5

Model#1 Fully Analytical: Theodorsen equations for motion-induced aerodynamic

forces with 2D structural model

Model#2 Empirical Approach: for 2D only

Model#3 Derivative-based Eigenvalue Analysis: Theodorsen flat plate aerodynamic

derivatives and Scanlan derivatives from the CFD forced vibration

simulations with 2D and 3D structural model

Model#4 Derivative-based FSI Simulations: Theodorsen flat plate aerodynamic

derivatives and Scanlan derivatives from the CFD forced vibration

simulations with 2D and 3D structural model

Model#5 Fully-coupled CFD Simulations: based on the VPM with 2D

and quasi-3D structural model

5.3 Wind Tunnel Aeroelastic Models

Wind tunnel tests are the basis for analysis and design of long-span bridges. These tests
are commonly used for important structures to study the aeroelastic instability behaviour
along with other aerodynamic phenomena. The flutter limits of some well-known
bridges around the world have been shown in Table 5.2. The table also provides the
countermeasures used to improve the aeroelastic stability behaviour against flutter.

It is worth mentioning that the experimental models explained here are just for the sake
of completeness and not covered in this research. Generally, there are two types of tests
conducted in wind tunnels for the aeroelastic stability analysis against flutter [144].

� Section model tests with spring supports: the aerodynamic characteristics of some
(2 or 3) selected modes can be studied.

� Full-3D aeroelastic model: the aerodynamic characteristics of more than three
modes can be studied at the same time to examine coupling effect of different
modes.

Section models represent the typical length of the structure. The section models are
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Table 5.2: Long-span cable-supported bridges with their flutter limits and
countermeasures [3, 28, 29, 32, 33, 39, 46, 142, 143].

Bridge name Main
span

Girder
type

Flutter
limit

Vibration countermeasures

[m] [m/s]

Suspension

Messina 3300 Triple box 75 Central slot

Akashi-Kaikyo 1991 Truss 84 Slotted deck, stabiliser,
open grating

Zhejiang Xihoumen 1650 Twin box 78 Slotted deck, central slot

Great Belt (Storebælt) 1624 Single box 60 Guide vanes, spoiler

Little Belt (Lillebælt) 600 Single box 100 Guide vanes

Tacoma Narrows 854 H-shape - Fairings (planned)

Runyang 1490 Single box 75 Centre vertical stabiliser

Tsing Ma 1377 Single box 74 Central slot

Humen 888 Single box 88 -

H̊alogaland 1145 Single box 71 -

Cable-stayed

Russky 1104 Single box - -

Sutong 1088 Single box 88 Damper

Stonecutters 1018 Twin box 140 Damper

Normandy 856 Single box 78 -

supported in the wind tunnel with the help of springs with the required stiffness. These
springs allow vertical and rotational motion and sometimes horizontal springs are used
for lateral movement. These tests are very common for aeroelastic stability studies of
long-span bridges.

A full aeroelastic model is constructed which is similar to prototype structure satisfying
some similarity laws. It is ensured that the model has the same mass, stiffness and
damping distributions of the prototype. It is much simpler to match the mass and
stiffness similarities; however, some external devices may be required to match damping
similarities. Although these tests are expensive to perform for long-span cable-supported
bridges but are very helpful in reducing the uncertainties associated with the unexpected
phenomena on the structure in its design life. These full aeroelastic models always
include subsequent section model testing as well as analytical studies. Some details
about the method have been discussed before in Section 4.3.4.

5.4 Fully-Analytical (Model#1)

The analytical formulation of aeroelastic instability problems started from aeronautical
industry especially for the solution of flutter problem of aeroplane wings. Theodorsen
[90] gave an analytical solution based on the potential flow theory for the motion-induced
aerodynamic forces on a flat plate. Comparison of experimental data with the theoretical
solution was made by Theodorsen and Garrick [145].
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The phenomenon of flutter is characterised by coupling of oscillatory heave and pitch
harmonic motion when the frequencies of these two modes coincide at a high wind speed.
The analytical flutter analysis requires simultaneous solution of generalised equations of
motion of a 2DOF system as a complex eigenvalue problem. The solution of eigenvalue
problem using Theodorsen equation of motion for heave and pitch can be found in [126,
128, 146, 147, 148]. Often the first fundamental heave mode and the first fundamental
torsional modes are considered and it is further simplified to a 2D system for which
a simplified 2D flutter analysis can be performed. This simplification assumes that
only these selected modes participate in the flutter analysis which may lead to the
overestimation of the flutter limit.

Fully-analytical models are more direct models and allow a better insight into the force
coupling. This approach is independent of the shape of the body but it neglects the
effect originating from the simplification to the flat plate. Due to this simplification,
this analysis is only valid for a flat plate or an airfoil.

U∞ h
α

FL

FM

B

Figure 5.1: Definition of degrees-of-freedom (heave h and pitch α) and aerodynamic
forces (lift FL and moment FM) for flutter analysis:
( ) undeformed state,
( ) deformed state.

A simplified 2DOF representation of the bridge deck may be considered. The analysis
of the fundamental equations of motion of the structure is accomplished through the
structural parameters which include mass, mass moment of inertia, bending frequency,
torsional frequency and damping ratios. Figure 5.1 shows an idealisation of a 2DOF
system for a flat plate where U∞ is the wind speed and B is the width of the section.
The equations of motion can be written as:

mḧ+ 2mξhωhḣ+mω2
hh = FL, (5.1a)

Iα̈ + 2Iξαωαα̇ + Iω2
αα = FM , (5.1b)

where m and I are the mass and mass moment of inertia, respectively. ξh and ξα are
the damping ratios, ωh and ωα are the natural circular frequencies for the heave and
pitch direction, h and α are the vertical displacement and rotation, FL and FM are the
lift force and moment, respectively.
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Comparing the corresponding lift FL Eqs. (4.22a) and (5.1a) we get,

mḧ+ 2mξhωhḣ+mω2
hh =− ρb2U∞πα̇− 2πρCU2

∞bα− 2πρCU∞bḣ− 2πρCU∞b
2 1

2
α̇, (5.2)

mḧ+ ρb2πḧ =−mω2
hh− 2πρCU∞bḣ− 2mξhωhḣ

− 2πρCU2
∞bα− ρb2U∞πα̇− 2πρCU∞b

2 1

2
α̇, (5.3)

ḧ =

( −mω2
h

m+ ρb2π

)
h+

(−2πρCU∞ − 2mξhωh
m+ ρb2π

)
ḣ

+

(−2πρCU2
∞b

m+ ρb2π

)
α +

(−ρb2U∞π − 2πρCU∞b2 1
2

m+ ρb2π

)
α̇. (5.4)

Similarly for moment FM Eqs. (4.22b) and (5.1b),

Iα̈ + 2Iξαωαα̇ + Iω2
αα =− ρb2π

1

2
U∞bα̇− ρb4π

1

8
α̈ + 2ρU∞b

2π
1

2
CU∞α

+ 2ρU∞b
2πCḣ+ 2ρ

1

2
U∞b

3πCα̇, (5.5)

Iα̈ + ρb4π
1

8
α̈ =2ρU∞b

2 1

2
πCḣ+ 2ρU∞b

2π
1

2
CU∞α− Iω2

αα

− ρb2π
1

2
U∞bα̇ + 2ρ

1

2
U∞b

3πCα̇− 2Iξαωαα̇, (5.6)

α̈ = (0)h+

(
2ρU∞b2 1

2
πC

I + ρb4π 1
8

)
ḣ+

(
2ρU∞b2π 1

2
CU∞ − Iω2

α

I + ρb4π 1
8

)
α

+

(−ρb2π 1
2
U∞b+ 2ρ1

2
U∞b3πC − 2Iξαωα

I + ρb4π 1
8

)
α̇. (5.7)

For this, the resulting equations takes the form,

ḧ = a21h+ a22ḣ+ a23α + a24α̇, (5.8a)

α̈ = a41h+ a42ḣ+ a43α + a44α̇. (5.8b)

Comparing the Eq. (5.4) with Eq. (5.8a) and Eq. (5.7) with Eq. (5.8b) we get,

a21 =
−mω2

h

m+ ρb2π
, a41 = 0, (5.9a)

a22 =
−2πρCU∞ − 2mξhωh

m+ ρb2π
, a42 =

2ρU∞b2 1
2
πC

I + ρb4π 1
8

, (5.9b)

a23 =
−2πρCU2

∞b

m+ ρb2π
, a43 =

2ρU∞b2π 1
2
CU∞ − Iω2

α

I + ρb4π 1
8

, (5.9c)

a24 =
−ρb2U∞π − 2πρCU∞b2 1

2

m+ ρb2π
, a44 =

−ρb2π 1
2
U∞b+ 2ρ1

2
U∞b3πC − 2Iξαωα

I + ρb4π 1
8

. (5.9d)
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The system of differential equations can be written in the state space form as follows,



ḣ

ḧ

α̇

α̈


 =




0 1 0 0

a21 a22 a23 a24

0 0 0 1

a41 a42 a43 a44







h

ḣ

α

α̇


 . (5.10)

This is of the form
Ẋ = AX, (5.11)

and assuming the response X is of the form

X = Reλt, (5.12)

where R is real. This simplifies to eigenvalue problem as follows:

[A− λI]Reλt = 0. (5.13)

The solution for h(t) and α(t) is of an exponential form. The four complex eigenvalues
λn of matrix A are in the form of two complex conjugate pairs. The real an and
imaginary bn parts of the eigenvalues are associated to modal frequencies ωn and modal
damping ratios ξn as:

λn = an ± ιbn, n = 1, . . . , 4 (5.14)

ωn = bn, (5.15)

ξn =
−an√
a2
n + b2

n

. (5.16)

The nature of the eigenvalues of the matrix A characterise the response of the system
as follows:

� positive real part: increasing response,

� negative real part: decaying response,

� imaginary part: oscillating response.

The main idea is to represent the aeroelastic instability as an eigenvalue problem. The
response of the system at the flutter boundary is assumed sinusoidal with a constant
amplitude. The system is solved successively for increasing wind speed U∞ and will
become unstable when at least one eigenvalue has a positive real part with a positive
imaginary part. The corresponding wind speed will be the flutter limit Ucr. When the
imaginary part goes towards zero, the oscillatory part vanishes and the phenomenon of
static divergence is observed which is characterised by a pure real eigenvalue. In this
situation, there will be pure heave or pitch motion which can be interpreted as the loss
of stiffness. The procedure to compute flutter limit by performing eigenvalue analysis is
explained in Figure 5.2.

5.5 Empirical Approach (Model#2)

The theory of thin airfoils helps to explain the aeroelastic phenomena of torsional
divergence. The wind velocity Ud, called the divergence velocity, corresponds to the
occurrence of a static stability problem, as even the smallest rotation of the airfoil
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Start/Input

Wind speed iteration
U∞

Frequency iteration
(assume ω = ωj)

Assemble system
A

Perform eigenvalue
αn, βn & ωn, ξn

min|ω − ωn|
< tol.

Damping?
ξn ≥ 0

Flutter limit
Ucr = U∞

End

update frequency
ω = ωn

update speed
U∞ = U∞ + ∆U∞

yes

yes

no

no

Figure 5.2: Flow chart to calculate flutter limit from fully-analytical eigenvalue analysis.

from the neutral position will imply displacements without limits. The divergence wind
speed Ud can be calculated by using aerodynamic moment coefficient CM of the deck
for varying wind angles of attack θ as follows:

M0 +
1

2
ρU2
∞B

2CM(θ)−Kα = 0, (5.17)

where Kα is the torsional stiffness of the deck. It can be seen that stability is always
met when the slope of moment coefficient at zero wind attack angle C ′M(0)≤ 0 [5].
However, if C ′M(0) > 0 then the stability limit with respect to static divergence is found
as follows:

Ud =

√
2Kα

ρB2C ′M(0)
= Bωα

√
2I

ρB4C ′M(0)
. (5.18)

The solution to obtain critical wind speed for static divergence in the modal coordinates
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[45] is given by:

Ud = Bωα

√
2I

ρB4C ′M(0)

∫
L
φ2
αdx∫

Lexp
φ2
αdx

, (5.19)

where φα is the bending mode shape. It should be noted that the divergence velocity
of above equation is only valid when the aerodynamic moment coefficient is linear for
the angles of attack of interest.

It is often the case that the flutter limit Ucr is lower than the divergence wind speed
Ud for cable-supported bridges which make static instability of less interest than flutter
[5]. Generally, torsional frequency fα is larger than vertical frequency fh in case of
cable-supported bridges with two cable planes; however, fα may decrease with increasing
wind speed due to the equivalent reduction of the torsional stiffness under the action of
the aerostatic pressure. Frandsen [149] showed that this could lead to flutter limit for
the airfoil as:

Ucr = Ud

√
1−

(
ωh
ωα

)2

. (5.20)

It is clear from the above equation that the flutter limit is smaller than the divergence
velocity Ud. It also appears that flutter may occur at a lower wind velocity if the
vertical and the torsional frequencies are close. Therefore, it is generally desired to keep
frequency ratio fα/fh more than two in larger cable supported-bridges [5].

Bleich [96] introduced an empirical formula using Theodorsen’s flutter theory for a flat
plate to calculate critical flutter limit. Selberg [150] also developed a closed-form solution
by introducing the shape ratio to apply for various types of bridge cross sections. Later
Klöppel and Thiele [151] gave a formula which is suitable for hand calculations by
making use of empirical diagrams [47]. The above expression (cf. Eq. (5.20)) agrees
reasonably well with semi-empirical expression by Selberg [150] who gave the following
expression which is based on theoretical thin airfoil for the flutter limit:

Ucr = 0.52Ud

√[
1− 1

γ2
ω

]
B

√
m

I
, (5.21a)

Ucr = 3.7Bfα

√
m
√
I/m

ρB3

[
1− (

ωh
ωα

)2

]
, (5.21b)

Ucr = 0.44B

√
[ω2
α − ω2

h]

√
ν̃

µ̃
, (5.21c)

Ucr = 0.6Bωα

√√√√
[
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(
ωh
ωα

)2
] √

mI

ρB3
, (5.21d)

Ucr = 2.623fαB

√[
1− 1

γ2
ω

]
rαµα, (5.21e)

where

ν̃ = 8(r/B)2, µ̃ = πρB2/4m, r =
√
I/m, (5.22a)

µα =
2m

ρB2
, rα =

√
I

mB2
, γω =

ωα
ωh
. (5.22b)
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Selberg’s expression is found in different forms such as Eq. (5.21a) in [5], Eq. (5.21b) in
[91], Eq. (5.21c) in [2], Eq. (5.21d) in [45], and Eq. (5.21e) in [38]. Selberg’s expression
may be used to provide a first estimate of the flutter stability limit for a flat plate
where frequency ratio fα/fh > 1.5 [45].

Rocard reported very similar empirical formula [38, 149] as follows:

Ucr = 6.282fαB

√[
1− 1

γ2
ω

]
r2
αµα

1 + 8r2
α

. (5.23)

Matsumoto et al. [152] also gave a simplified formula to calculate flutter limit for a flat
plate using relationships between mass m and mass moment of inertia I as I = mb2/3
which is very similar to Selberg’s form as follows:

Ucr = 3.81Bfα

√√
Im

ρB3

[
1− (

ωh
ωα

)2

]
. (5.24)

Another simplified formula which was well known by its simplicity and convenience was
given by Put [153] to calculate critical flutter limit as follows:

Ucr = η

[
1 +

(
ωα
ωh
− 0.5

)√
r

b
0.72µβ

]
ωhb, (5.25)

where µβ = m/(πρ(B/2)2) and η is an empirical form factor giving the difference of the
critical wind speed of a certain profile (1 for flat plate). The above equation was further
simplified [154] as follows:

Ucr =

[
2.5

√
r

b
µβ

]
2bfα. (5.26)

A wide streamlined deck of a bridge shows usually critical velocity close to theoretical
flat plate flutter limit whereas bluff girders, trusses and deep deck sections show a larger
difference between the theoretical flutter limit and the measured in the wind tunnel.
Usually, this difference is represented with the help of a ratio of measured flutter limit
to flat plate prediction βf which is about 90% for the streamlined box girders and can
be up to 40% for the bluff box sections [5]. Semi-empirical approaches are suitable for
hand calculations and are simple to use; however, they do not provide insight of the
force coupling and can only be used for 2D cases and flat plates. It would appear to
be unwise to rely on a prediction based on an empirical formula alone, therefore, more
detailed analyses are required for important structures and at the final design stage.

5.6 Derivative-based Analysis (Semi-analytical Approach)

5.6.1 Solution in Frequency Domain

The flutter analysis is traditionally conducted in the frequency domain as the
aerodynamic derivatives are functions of reduced speed which requires an iterative
solution to determine flutter limit. There are two main analytical approaches for the
solution of flutter problem: the Complex Eigenvalue Analysis (CEVA) [41] and the
Step-by-step Analysis (SBSA) [155]. The CEVA has been used for a long time for
flutter problems. In the CEVA main challenge is related to the investigation of the
system frequency and damping ratio relationship with wind speed whereas the SBSA is
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very useful for such limitations and also it describes the role of flutter derivatives on
critical condition and on flutter stabilisation [156].

The motion-induced aerodynamic forces depend on the response frequency of the bridge,
which is determined in the analysis of complex nonlinear eigenvalue problem and then
the critical flutter limit is calculated [157, 158]. The iterative solution is necessary
because the aerodynamic derivatives depend on the reduced speed vr which is based on
oscillation frequency ω which needs to be known [45]. The common approach of solving
2DOF coupled flutter equations is through CEVA where the flutter characteristics are
solved based on an eigenvalue problem. Xu [28] applied this approach and computed
flutter limit of Stonecutters bridge. Dyrbye and Hansen [48] provides modal form
solution where real and imaginary parts are given with Mode Shape Similarity Factor
(MSSF). Dung et al. [159] traces the system complex mode with the increasing wind
speed which helps to describe the dynamic behaviour before flutter.

Matsumoto et al. [160] developed the SBSA and reported flutter characteristics including
frequency, damping, amplitude ratio and phase difference characteristics and compared
with the CEVA which showed reasonable agreement [155, 161]. Discrepancies were
observed in the results obtained by the CEVA and the SBSA at higher reduced speeds
than the flutter limit therefore both damping and flutter frequency must simultaneously
converge in the iteration [62, 162]. Later modifications showed perfect agreement
[62, 162]. In other studies [163, 164, 165, 166, 167, 168] the complex branch switch
characteristics of coupled flutter instability were focused. This method was also
applied to highlighting the characteristics of different bluff sections [169, 170]. Ge
and Xiang [32], Yang et al. [171, 172, 173] also proposed, based on the concept of
the SBSA analysis, a 2D coupled flutter analysis method for three-degree-of-freedom
(3DOF) to investigate the mechanism of flutter with the focus on the aerodynamic
damping, frequency and flutter modality. Chen [174] presents closed-form formulations
for estimating the modal frequencies, damping ratios, and coupled motions of a 2D
aeroelastic bridge with variation in the wind speed.

The two branches in coupled flutter are known as heaving branch (HB) and torsional
branch (TB). In the SBSA, the flutter frequency in the HB and the TB are converged
by iterative calculation. Matsumoto et al. [152, 162, 164, 167, 169, 170] investigated the
behaviour of frequency and damping ratio of two coupled modes as well as several higher
modes and showed the frequency-velocity, damping-velocity, amplitude ratio-velocity and
phase difference-velocity characteristics. Based on several fundamental sections and
flow-structure interaction, they also classified flutter generation mechanism into detailed
branches [156]:

� Low-speed torsional flutter,

� High-speed torsional flutter,

� Heaving-branch coupled flutter,

� Torsional-branch coupled flutter and

� Heaving-torsional coupled flutter.
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5.6.2 Solution in Time Domain

The frequency-domain approach for determining the flutter limit is limited to consider
a linear system under the action of the stationary wind without taking into account
aerodynamic or structural non-linearities. Therefore, a major part of recent research
focuses on the time domain analysis, where it is possible to include these nonlinearities.
One of the earliest implementation was by Beliveau et al. [175] utilising the indicial
function for time and frequency domain. Initially the buffeting analysis was usually
conducted in time domain using the quasi-steady approach [176, 177, 178, 179], with
state-space model for impulse functions [180]. Boonyapinyo et al. [181], Chen et al.
[182, 183, 184], Chen and Kareem [185], Thang et al. [186], Øiseth et al. [187, 188], Guo
and Ge [189] present time-domain buffeting and flutter analysis based on the state-space
using rational approximation of the impulse functions, for full and reduced model in
modal coordinates.

5.6.3 Simplified Approach

Some attempts have been made to simplify flutter analysis by developing relationship
and mutual dependence of aerodynamic derivatives [161] such as

H∗1 = kH∗3 , H∗4 = −kH∗2 ,
A∗1 = kA∗3, A∗4 = −kA∗2. (5.27)

Furthermore, there is another dependence between two pairs (A∗2 − A∗3) and (H∗1 −H∗4 )
because of the equivalent Wagner function. This concludes that there are only two
independent aerodynamic derivatives among the eight. Scanlan et al. [190] analytically
described the interrelations and the dependences among the aerodynamic derivatives
of an airfoil and investigated experimentally obtained aerodynamic derivatives of three
different bridge deck sections. It was found that this relation clearly does not hold for
bluff sections. However, Xu [191, 192] investigated the relationship between aerodynamic
derivatives of slender bridge and based on his previously proposed semi-analytical
aerodynamic derivatives of flexible structure, showed that certain relations exist between
these aerodynamic derivatives as follows:

H∗1 = −4A∗1, H∗2 = −4A∗2 −
π

k
,

H∗3 = −4A∗3 +
π

16
, H∗4 = −4A∗4 +

π

2
,

H∗1 = kH∗3 −
πG

2
, H∗2 = −H

∗
4

k
− πF

2k
,

A∗1 = kA∗3 −
πk

64
+
πG

8
, A∗4 = −kA∗2 −

π

8
(1− F ) . (5.28)

It also shows that semi-analytical aerodynamic derivatives are applicable to bridges
with a streamlined cross-section. Additionally, Tubino [193] provides inter-relations
among aerodynamic derivatives using generalised quasi-static theory. Al-Assaf [194]
developed an alternative analytical approach to supplement the wind tunnel testing
to estimate flutter limit of a bluff bridge section by synthesising the aerodynamic
derivatives based on previous studies of a similar deck configuration to find critical
flutter limit. Lute et al. [195] also used an aerodynamic derivative database to predict
the flutter derivatives for any deck size for estimation of flutter limit. Mannini [196]

66



CHAPTER 5. MODELS FOR FLUTTER ANALYSIS

investigated flutter instability by analysing a large number of dynamic and aerodynamic
data and proposed a simplified expressions which use only three or even two aerodynamic
derivatives for the calculation of flutter limit [38, 197, 198]. Lee et al. [199] gave another
simplified formula by applying the quasi-steady approach and using approximations in
the aerodynamic derivatives, for calculating 2D flutter limit. Øiseth and Sigbjörnsson
[200] also presented a simplified analytical formulation, including closed-form algebraic
expressions, for the prediction of the critical flutter limit. Øiseth et al. [201] suggested a
simplified approach to compute flutter limit by using a new set of modified quasi-steady
coefficients. Banerjee [202] derived expressions for generalised mass, generalised stiffness
and generalised aerodynamic force terms in compact explicit form. Vairo [203] proposed
a simplified approach for the dynamic problem by considering a simple mechanical
system with equivalent stiffness properties for capturing the main wind-bridge interaction
mechanisms. All these simplifications generally provide a reasonable prediction for flat
plate flutter but are not suitable for bluff bridge cross sections.

5.6.4 SDOF Instability

5.6.4.1 Pure Vertical Motion

The pure vertical bending of the bridge deck is described here by considering the
aerodynamic lift of the bridge deck in the Scanlan form. The governing equation of
motion for the SDOF can be derived by comparing the corresponding lift Eqs. (5.1a)
and (4.29a) as:

mḧ+ 2mξhωhḣ+mω2
hh =

1

2
ρU2
∞B

[
KH1

ḣ

U∞
+KH2

Bα̇

U∞
+K2H3α +K2H4

h

B

]
. (5.29)

Since pure vertical motion (α̇ = α = 0) is considered, therefore

mḧ+ 2mξhωhḣ+mω2
hh =

1

2
ρU2
∞B

[
KH1

ḣ

U∞
+K2H4

h

B

]
. (5.30)

Simplifying the above equation leads to the following form:

mḧ+ 2mξhωhḣ−
1

2
ρU2
∞BKH

∗
1

ḣ

U∞
+mω2

hh−
1

2
ρU2
∞BK

2H∗4
h

B
= 0. (5.31)

As a result,

mḧ+

(
2mξhωh −

1

2
ρU2
∞BKH

∗
1

1

U∞

)
ḣ+

(
mω2

h −
1

2
ρU2
∞BK

2H∗4
1

B

)
h = 0. (5.32)

Thus the total stiffness of the system is:

ksys = mω2
h −

1

2
ρU2
∞BK

2H∗4
1

B
= mω2

h −
1

2
ρB4ω2H∗4

1

B
. (5.33)
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From the above equation, the frequency of oscillation of the system can be written as:

ω =

√
ksys
m

=

√
mω2

h

m
− 1

2m
ρB3ω2H∗4 , (5.34)

ω = ωh

√
1− 1

2m
ρB4

(
ω

ωh

)2

H∗4 ≈ ωh

√
1− 1

2m
ρB3H∗4 . (5.35)

In the similar way the total damping of the system can be expressed as:

csys = 2mξhωh −
1

2
ρU2
∞BKH

∗
1

1

U∞
. (5.36)

This shows that if the derivative H∗1 is negative, the total damping will be positive
and the system will remain stable. When H∗1 becomes positive, the total damping will
become negative and this will cause the system to oscillate with divergent amplitudes
leading to instability. Therefore at critical condition the above equation will take the
form:

2mξhωh =
1

2
ρU2
∞BKH

∗
1

1

U∞
. (5.37)

Further simplifying, we can write:

H∗1 =
4mξhωh
ρU∞BK

. (5.38)

Since K = Bω/U∞, therefore, the instability condition of the SDOF vertical bending
can be expressed as:

H∗1 =
4mξh
ρB2

ωh
ω
≈ 4mξh

ρB2
. (5.39)

5.6.4.2 Pure Torsional Motion

The streamline cross sections are prone to the classical flutter instability; however, there
is a wide range of bridge deck sections which are not streamlined. It can be possible
for bluff cross sections that the vertical and torsional motion remain uncoupled and
only torsional flutter occurs. A bluff section shows significantly different behaviour to a
streamline section. The response of such a section may be pure torsional motion which
leads to SDOF torsional flutter. H-shape sections and rectangular sections with smaller
aspect ratios (B/D) are usually more prone to the torsional flutter instability. The
streamline cross sections have a negative trend of aerodynamic derivatives H∗1 and A∗2
whereas for bluff cross sections the aerodynamic derivative A∗2 may change sigh from
negative to positive even at relatively low vr range. This gives rise to SDOF torsional
instability.

The pure torsional motion of the bridge deck is considered here for the SDOF torsional
flutter analysis. Considering the aerodynamic moment of the bridge deck, the governing
equation of motion for the SDOF can be derived by comparing the corresponding
moment Eqs. (5.1b) and (4.29b) as:

Iα̈ + 2Iξαωαα̇ + Iω2
αα =

1

2
ρU2
∞B

2

[
KA∗1

ḣ

U∞
+KA∗2

Bα̇

U∞
+K2A∗3α +K2A∗4

h

B

]
. (5.40)
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Since pure torsional motion (ḣ = h = 0) is considered, therefore

Iα̈ + 2Iξαωαα̇ + Iω2
αα =

1

2
ρU2
∞B

2

[
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Bα̇
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+K2A∗3α

]
. (5.41)

Simplifying the above equation leads to the following form:
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As a result,
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Thus the total stiffness of the system is:

ksys = Iω2
α −

1

2
ρU2
∞B

2K2A∗3 = Iω2
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2
ρB4ω2A∗3. (5.44)

From the above equation, the frequency of oscillation of the system can be written as:
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√
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ρB4A∗3. (5.46)

In the similar way the total damping of the system can be expressed as:

csys = 2Iξαωα −
1

2
ρU2
∞B

2KA∗2
B

U∞
. (5.47)

This shows that if the aerodynamic derivative A∗2 is negative, the total damping will
be positive and the system will remain stable. When A∗2 becomes positive, the total
damping will become negative and this will cause the system to oscillate with divergent
amplitudes leading to instability. Therefore at critical condition the above equation will
take the form:

2Iξαωα =
1

2
ρU2
∞B

2KA∗2
B

U∞
. (5.48)

Further simplifying, we can write:

A∗2 =
4Iξαωα
ρU∞B3K

. (5.49)

Since K = Bω/U∞, therefore, the instability condition of the SDOF torsional flutter can
be expressed as:

A∗2 =
4Iξα
ρB4

ωα
ω
≈ 4Iξα
ρB4

. (5.50)

Chen and Kareem [204] observed that the critical wind speed is reduced by the coupling
of heave and pitch motion even for torsional flutter. However, SDOF and 2DOF
approaches show usually close results [196].
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The influence of additional structural damping on the aeroelastic instability is low.
Figure 5.3 shows the typical behaviour of aerodynamic derivative A∗2 for different cross
sections. An increase in the structural damping (∆D∗) does not improve significantly
the behaviour against aeroelastic instability as compared to other phenomena such as
VIV and buffeting response. However, the choice of the cross section is much more
important than increasing only the structural damping.

oooo

vr

A
∗ 2
,D

∗ s

D∗
s

D∗
s +∆D∗

s

stable

unstable

Figure 5.3: Schematic of aerodynamic derivative A∗2 related to torsional instability for
different section configurations (D∗: structural damping).

In complex form, the aeroelastic instability in torsional motion is shown in Appendix
B.1.

5.6.5 Derivative-based Eigenvalue Analysis (Model#3)

The formulation to the eigenvalue problem in case of Scanlan representation is similar
as described in Section 5.4. Comparing the corresponding lift FL Eqs. (5.1a) and (4.29a)
we get,
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Similarly, for moment FM by comparing Eqs. (5.1b) and (4.29b),
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(5.56)

Comparing the Eq. (5.53) with Eq. (5.8a) and Eq. (5.56) with Eq. (5.8b) we get,
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The procedure to compute flutter limit by this approach is explained in Figure 5.4.
Numerical forced vibration simulations or wind tunnel tests can be used to determine
motion-induced aerodynamic forces. A flow solver based on the VPM has been used
here to perform forced vibration simulations on the cross sections (cf. Section 4.3.3).
The forced vibration simulations on a section are separately performed in the sinusoidal
heave and pitch motion over a range of reduced speeds vr. The reduced speed can be
controlled by changing the period of heave and pitch forcing motion.

vr =
U∞
Bfo

=
U∞
B
To, (5.58)

where fo and To are the frequency and period of the forcing motion, respectively. The
resulting lift force and moment time histories are then used to compute the aerodynamic
derivatives. Aerodynamic derivatives can be computed following the procedure explained
in Section 4.4. The response of oscillating section just at the flutter boundary is assumed
sinusoidal with constant amplitude. Eigenvalue solution is then performed to compute
the flutter limit.

5.6.5.1 Approach to Consider Mode Shapes

It is assumed until this point that the mode shapes for both heave and pitch motion
are exactly the same; however, in actual situation they can be different. An approach
to consider mode shape in flutter analysis is presented in this section. Assuming that
the vertical displacement h and the rotation α of a bridge deck are represented by
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Figure 5.4: Flow chart to calculate flutter limit from derivative-based eigenvalue analysis.

generalised DOF as functions of φ(x) and η(t) as follows:

h = φh (x) ηh (t) , (5.59)

α = φα (x) ηα (t) (5.60)

where φn (x) is the time invariant mode shapes and ηn (t) is the modal coordinate. The
solution of the equation of motion is assumed harmonic of the form:

ηn (t) = Gn (ω) e(a+ιb)t (5.61)

where Gn is the Fourier amplitudes of mode n. Inserting the harmonic functions h
and α in Eqs. (5.1a), (4.29a), (5.1b) and (4.29b) and by comparing the corresponding
equations for lift and moment gives the following two equations:
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with

Cij =

∫
L
φi (x)φj (x) dx∫
L
φ2
i (x) dx

, (5.64)

where Cij is the dimensionless coefficient representing shape-wise similarity of the mode
shapes i and j. The determinant of these equations can be set equal to zero and
written as a function of Xf = ω/ωh. Separating the equations in real and imaginary
parts generate two characteristic equations as follows:
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4
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3
f +R2X

2
f +R1Xf +R0 = 0, (5.65a)

I3X
3
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2
f + I1Xf + I0 = 0, (5.65b)

where the coefficients Ri,Ij (i = 0, . . . , 4, j = 0, . . . , 3) are as follows:
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R1 = 0,

R0 = γ2,

(5.66)

I3 = 1
2χα

A∗2 + 1
2χh

H∗1 + 1
4χαχh

(H∗4A
∗
1 +H∗2A

∗
4 − ψhαH∗3A∗1 + ψhαH

∗
2A
∗
4) ,

I2 = − 1
χh
γA∗2 − 1

χα
ξhA

∗
3 − 2ξh − 2ξαγ,

I1 = − 1
2χα

A∗2 − 1
2χh

γ2H∗1 ,

I0 = 2ξαγ + 2ξhγ
2

(5.67)

with
γω =

ωα
ωh
, (5.68)

χh =
m

ρB2
, χα =

ρB2

I
, (5.69)

ψhα = ChhCαα =

∫
L
φh (x)φα (x) dx∫
L
φ2
h (x) dx

∫
L
φh (x)φα (x) dx∫
L
φ2
α (x) dx

. (5.70)

where ψhα is known as Mode Shape Similarity Factor (MSSF). Modes are less likely to
couple if the value of the MSSF is close to 0 and are more likely to couple if it is close
to 1. This means that an asymmetric vertical bending mode is less likely to couple
with a symmetric torsional mode and vice versa. The flutter limit is computed for
critical Xf where both the roots of the real and imaginary equation are zero. Since the
aerodynamic derivatives are functions of vr, the solution is commonly found by plotting
the roots of real and imaginary equations when with increasing vr both parts become
zero simultaneously.

5.6.5.2 Multimode Approach

The study of flutter phenomena is very much related to the understanding of nature
of unsteady aerodynamic forces, mechanism of mode-coupling and methodology of
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multi-mode analysis [205]. Scanlan [206], Scanlan and Jones [207] introduced single
mode and 2D-flutter analysis methods using modal coordinates by considering the main
contribution of selected fundamental torsional mode (for torsional flutter) and coupling
between pitch and heave modes (for classical flutter). The 2D coupled flutter analysis is
sometimes not sufficient when the contribution of higher modes is significant. Therefore
mode-by-mode approach can be adopted [46]. A 2D analysis is applicable to a case
where the deck is straight, with prismatic cross section and heave and pitch modes have
the same form across the span of the bridge [91]. Additionally, it assumes constant wind
velocity at whole deck level.

The horizontal movement of the deck along the direction of the wind for very flexible
long-span bridges can play an important role. Sometimes it is necessary to consider
the influence of the horizontal mode shape leading to 3D flutter analysis [208]. The
lateral modes may have a significant influence on the accurate prediction of the flutter
limit for long-span bridges [209, 210, 211]. Yamada et al. [205], Katsuchi et al. [212,
213] presented a classical example of Akashi-Kaikyo Suspension Bridge which is the
world’s longest with stiffened truss section. This method was used to highlight the
effect of relative amplitude [214] and identification of critical structural modes [49]. It
was observed from the multi-mode 3D flutter analysis that the significant participation
of lateral modes in the flutter instability existed which has been never seen before
[215]. It was shown that by including P ∗i aerodynamic derivatives flutter limit reduced
considerably. Later, Matsumoto et al. [62] explained that it is due to the structural
coupling of lateral mode with the torsional mode. Lateral aerodynamic derivatives P ∗i
are usually not directly measured from wind tunnel tests, therefore, quasi-steady values
may be used as shown in Table 5.3.

Table 5.3: Conversion between the notations of the aerodynamic derivatives by Scanlan
and Quasi-steady theory, after [28].

Scanlan P ∗1 P ∗2 P ∗3 P ∗5 H∗5 A∗5 H∗6 , A∗6 P ∗4 , P ∗6

Quasi-steady − 1
K
CD

1
2K
C ′D

1
2K2C

′
D

1
2K
C ′D

1
K
CL − 1

K
CM 0 0

The state-of-the-art flutter analysis is generally carried out in the frequency-domain by
using generalised coordinate transformation in mode-space sometimes using the FEM
[216, 217, 218, 219, 220, 221]. Only a few modes are involved in the flutter instability
which are necessary to consider in the analysis for sufficient accuracy. In some cases, the
significant effect of higher modes in the flutter limit prediction was observed instead of
considering only fundamental bending and torsional mode [51, 101, 207, 212, 222]. The
3D flutter analysis uses superposition of modes in which dynamic coupling between the
structural modes occurs through the self-excited aerodynamic forces [91]. Some selected
modes of vibration are usually included in the flutter analysis which is an approximation;
however, it can have a good precision if sufficient modes are chosen. The 3D effect of
the structure and the wind characteristics, as well as the influence of coupled modes,
is important for flutter stability analysis as the change in characteristics of dominant
mode affects the critical flutter limit. It is possible to have multiple mode coupling at
the same critical wind speed when more than one curves representing the real part of
the eigenvalues (related to damping) simultaneously becomes positive [1, 223]. This is
very similar to multiple buckling modes of a column under axial load.
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Flutter analysis is often performed in mode-space for systems with multiple modes
for which the development of analytical methods has been carried out by Agar
[224, 225]. The approaches in modal space utilise generalised coordinate transform
and modal superposition techniques [156, 215, 226]. Scanlan [99, 100], Jain et al.
[101], Katsuchi et al. [212], Agar [224], Gu et al. [227], Ge et al. [228], Vu et al.
[229] have utilised multi-mode approaches to study flutter response of long-span bridges.
Hua and Chen [219], Ge and Tanaka [230], Ding et al. [231] examined full-order
methods and compared the results with the two-mode and multi-mode procedures.
In multi-mode approach, selected modes are included in the analysis whereas the
full-order method considers all DOF which is more accurate flutter analysis from the
viewpoint of methodology; however, requires often more computation time. Chen and
Kareem [49, 204, 232, 233, 234, 235] provide valuable insight into multimode coupled
flutter by introducing a closed-form expressions without using a CEVA for estimating
modal characteristics of bridge systems. They presented 2D-flutter prediction as well
as guidance on the selection of critical structural modes and understanding of the
multimode coupled bridge flutter response.

Starossek [109, 236, 237] used the FEM to model bridge decks using beam elements to
predict flutter limit for a MDOF system. The complex representation was utilised to
predict 2D torsional flutter limit [110] and coupled flutter in the mode space [108]
by comparing real-number and complex-number descriptions of the same mechanical
phenomena. Starossek et al. [111], Thiesemann et al. [238], Thiesemann and Starossek
[239] used complex representation to compare the aerodynamic derivatives from the CFD
simulations based on the FVM and water tunnel tests.

The procedure to perform multimode flutter analysis in the mode space is explained
herein. Considering a 3DOF system as shown in Figure 4.7, the equations of motion
can be written as:

myp̈+ 2myξpωpṗ+myω
2
pp = FD, (5.71a)

mzḧ+ 2mzξhωhḣ+mzω
2
hh = FL, (5.71b)

mθα̈ + 2mθξαωαα̇ +mθω
2
αα = FM , (5.71c)

where my, mz and mθ are the masses activated in translational y-axis, z-axis and and
rotational about x-axis, respectively. p is the lateral displacement, ξp is the damping
ratio, ωp is the frequency of the lateral motion. FD is the horizontal aerodynamic force,
respectively. The Eq. (4.39) can be written in the matrix form as follows:




FD

FL

FM


 =

1

2
ρU∞BK




P ∗1 P ∗5 BP ∗2
H∗5 H∗1 BH∗2
BA∗5 BA∗1 B2A∗2







ṗ

ḣ

α̇




+
1

2
ρU2
∞K

2




P ∗4 P ∗6 BP ∗3
H∗6 H∗4 BH∗3
BA∗6 BA∗4 B2A∗3







p

h

α


 , (5.72)

with

Cae =
1

2
ρU∞BK




P ∗1 P ∗5 BP ∗2
H∗5 H∗1 BH∗2
BA∗5 BA∗1 B2A∗2


 , (5.73)
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Kae =
1

2
ρU2
∞K

2




P ∗4 P ∗6 BP ∗3
H∗6 H∗4 BH∗3
BA∗6 BA∗4 B2A∗3


 . (5.74)

The aerodynamic force acting on the elements of the structure can be written as:

Qae =
1

2
ρU2
∞

(
Asu̇+

B

U∞
Adu

)
= Cae (ω) u̇+ Kae (ω)u. (5.75)

The vector Qae represents the aeroelastic force acting on the bridge deck which is the
sum of aeroelastic stiffness Kae multiplied by nodal displacements u and aeroelastic
damping Cae multiple by nodal velocities u̇. The dynamic equilibrium of the bridge
deck under wind forces can be defined as:

Mü+ C0u̇+ K0u = Qae, (5.76)

Mü+ C0u̇+ K0u = Caeu̇+ Kaeu, (5.77)

Mü+ (C0 −Cae) u̇+ (K0 −Kae)u = 0. (5.78)

Taking equivalent damping and stiffness as:

CR = C0 −Cae, (5.79a)

KR = K0 −Kae. (5.79b)

This leads to solution of the following equation:

Mü+ CRu̇+ KRu = 0. (5.80)

A modal approach is used for the solution of multimode flutter problem. The structural
displacement r (x) consists of mode shapes Φ (x) and the generalised DOF q (t) as
follows:

r (x) = Φ (x) q (t) , (5.81)

where
Φ (x) =

[
φ1 (x) · · · φi (x) · · · φn (x)

]
, (5.82)

φi (x) =
[
φy (x) φz (x) φθ (x)

]T

i
, (5.83)

q (t) =
[
q1 (t) · · · qi (t) · · · qn (t)

]T

, (5.84)

where φy (x), φz (x) and φθ (x) are the mode shapes in lateral, vertical and torsional
directions, respectively. Including all modes in the analysis corresponds to full-order
analysis. This may require more time of computation. Some selected number of modes
N can be chosen for practical purposes to reduce computation time while achieving
sufficient accuracy. Dynamic equilibrium is defined in mode space as:

M̃0q̈ (t) + C̃0q̇ (t) + K̃0q (t) = Q̃se, (5.85)

where M̃0, C̃0 and K̃0 are the modal mass, damping and stiffness matrices, respectively.
Q̃se is the modal aerodynamic force vector. Whereas subscript 0 indicates the structural
properties without any wind action. The diagonal terms of the matrix M̃0 are given as:

M̃0,i =

∫

L

φT
i (x) M0φi (x) dx, (5.86)
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with M0 given as:

M0 =



my (x) 0 0

0 mz (x) 0

0 0 mθ (x)


 , (5.87)

where my (x), my (x) and my (x) are the distributed mass along the main span in the
lateral, vertical and rotational directions, respectively. Each mode shape φi is associated
with natural frequency ω0,i and the modal damping ζ0,i and hence the modal matrices
can be obtained as:

M̃0 = diag
(
M̃0,i

)
, i ∈ {1, . . . , N} , (5.88a)

C̃0 = diag
(

2ζ0,iω0,iM̃0,i

)
, (5.88b)

K̃0 = diag
(
ω2

0,iM̃0,i

)
. (5.88c)

The motion-induced aerodynamic forces on the bridge deck can be written as:

Q̃se = C̃ae (ω) q̇ + K̃ae (ω) q, (5.89)

C̃ae =




. . .
... . .

.

· · · C̃ae,ij · · ·
. .
. ...

. . .


 , K̃ae =




. . .
... . .

.

· · · K̃ae,ij · · ·
. .
. ...

. . .


 , (5.90)

C̃ae,ij =

∫

Lexp

φT
i (x) Caeφjdx, (5.91a)

K̃ae,ij =

∫

Lexp

φT
i (x) Kaeφjdx, (5.91b)

where Lexp is the part of the deck exposed to wind and often Lexp ≈ L. The matrices
Cae and Kae are already defined in Eq. (5.73) and (5.74). By combining Eqs. (5.85)
and (5.89) as:

Mü+ C0u̇+ K0u = Caeu̇+ Kaeu. (5.92)

The characteristic solution of the homogeneous equation above is obtained as:

w = ŵλe
λt. (5.93)

This provides quadratic complex eigenvalue problem:

η̈ + M̃−1
0

(
C̃0 − C̃ae

)
η̇ + M̃−1

0

(
K̃0 − K̃ae

)
η = 0, (5.94)

and by introducing the vectors ψ =
[
η̇ η

]
and ψ̇ =

[
η̈ η̇

]
, gives the following

equation:

ψ̇ =

{
η̈

η̇

}
=

[
−M̃−1

0

(
C̃0 − C̃ae

)
−M̃−1

0

(
K̃0 − K̃ae

)

I 0

]{
η̇

η

}
, (5.95)

which is of the form
ψ̇ = Aψ, (5.96)
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where I is an identity matrix of size N×N and 0 is a matrix of size N×N with all zero
elements. N is the number of modes included in the eigenvalue problem. Introducing
the characteristic solution w = ŵeλnt with its first derivative ẇ = λnŵe

λnt and second
derivatives ẅ = λ2

nŵe
λnt, gives the following relations:

ψ =

{
λnŵ

ŵ

}
eλnt = ψ̂eλnt, (5.97a)

ψ̇ =

{
λ2
nŵ

λnŵ

}
eλnt = λnψ̂e

λnt. (5.97b)

Introducing these relations into Eq. (5.95) leads to the following

λnψ̂e
λnt = Aψ̂eλnt, (5.98)

A =

(
−M̃−1

0 CR −M̃−1
0 KR

I 0

)
, (5.99)

wλ =

(
λw

w

)
, (5.100)

(A− λI)wλe
λt = 0. (5.101)

The eigenvalue problem can be finally written as:

(A− λI) ψ̂eλt = 0, (5.102)
(
λ2
nM̃0 + λn

(
C̃0 − C̃ae

)
η̇ +

(
K̃0 − K̃ae

))
w = 0, (5.103)

(
λ2
nM + λnCR + KR

)
w = 0. (5.104)

The above equation can be transformed into a complex nonlinear eigenvalue problem
which can be solved iteratively. This results in 2N eigenvalues λn which are associated
with eigenvector ŵ. The solution is in terms of complex conjugate pairs such that
λn = an ± ιbn. The real an and imaginary bn parts of eigenvalues are associated with
the damping ratio and frequency as follows:

λn = an ± ιbn, n = 1, . . . , 2N (5.105)

ωn = bj, (5.106)

ξn =
−an√
a2
n + b2

n

. (5.107)

The procedure of multimode flutter stability analysis is shown in Figure 5.5.

5.6.5.3 Sort and Arrange Eigenvalues

Flutter analysis in the frequency domain is performed by using eigenvalues and
eigenvectors of a matrix in state-space form. Most of the roots of flutter equation at
any iteration would be complex and unsorted with respect to the modes which requires
sorting the roots in order to associate modal frequencies and modal damping ratios to
the structural modes. Flutter occurs when at least one real part of the root becomes
positive with the corresponding positive imaginary part. The process explained by Qiu
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Start/Input

Assemble structure
M̃0, C̃0, K̃0

Wind speed iteration
U∞

Mode loop
j

Frequency iteration
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Assemble system
C̃ae, K̃ae

Perform eigenvalue
αn, βn & ωn, ξn

min|ωj − ωn|
< tol

Save response
αj = αn, βj = βn

Check mode
j = m

Damping?
ξn ≥ 0

Flutter limit
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End

update frequency
ωj = ωn

next mode
j = j + 1

update speed
U∞ = U∞ + ∆U∞
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eigenvalues

yes

yes

yes

no

no

no

Figure 5.5: Flowchart for multimode flutter analysis in frequency domain.
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and Sun [240] has been used here. At the start of the analysis, frequency ωj of mode j
is used in the reduced speed vr to search for aerodynamic derivatives and to formulate
the system matrices. Eigenvalues and eigenvectors are then computed which provide
modal frequencies ωn and modal damping ratios ξn. These are then compared to the
corresponding natural modes in order to identify the order of modes. This new frequency
ωn is used for next iteration and the process is repeated until convergence is reached.
The last converged frequency is used in the first calculation of the next velocity iteration
(U∞ = U∞ + ∆U∞). The eigenvectors of the converged modes are compared to the
previous wind speed to identify the modes and to sort new eigenvectors. The process is
repeated for next steps on the same lines.

5.6.6 Derivative-based FSI Simulations (Model#4)

The most general approach for the solution of the dynamic response of structural systems
is the direct numerical integration of the dynamic equilibrium equations. This involves,
after the solution is defined at time zero, the attempt to satisfy dynamic equilibrium
at discrete points in time. A numerical method described here is for calculating the
flutter limit without the need of an eigenvalue solution. The method makes use of
the aerodynamic derivatives and modal data of the structure to compute the dynamic
response of the system.

The developed approach is based on numerical integration and with small modifications,
it can be adapted to other structures which exhibit similar aeroelastic phenomenon.
Newmark-Beta method has been used for time integration with the average acceleration
method which is identical to the trapezoidal rule and is used to numerically evaluate
second order differential equations. The scheme shown in Figure 5.6 describes the
procedure to compute flutter limit. Geometry, dynamic properties and the aerodynamic
derivatives are required as input.

The approach was first formulated for a section model of the bridge with only 2DOF
in heave and pitch direction. The dimensional reduction to a 2DOF system is a
simplification but it neglects the effects coming from the higher modes. The scheme was
then extended to be used for the bridge in the modal coordinates. The aerodynamic
derivatives obtained through forced vibration analysis (cf. Section 4.4.2) are used to
calculate the motion-induced aerodynamic forces for the section.

The scheme presented in the flow chart (see Figure 5.6) starts with input data and
some initial value of wind speed U∞. The trial frequency of oscillation ω at flutter
could be somewhere between the heave frequency ωh and the pitch frequency ωα,
therefore, trial frequency ω is varied from ωh to ωα. The aerodynamic derivatives are
frequency dependent and are calculated on the basis of the oscillation frequency. The
aerodynamic derivatives obtained by the forced vibration analysis based on the VPM
(cf. Section 4.4.2) are then searched at this frequency. The motion-induced aerodynamic
forces are then computed from these derivatives. The forced vibration simulations are
performed at a certain amplitude of oscillation. Therefore, the calculated motion-induced
forces will be accurate at only these amplitudes. This assumption is valid since the
motion-induced forces are linearised with respect to the motion.
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Figure 5.6: Flow chart to calculate flutter limit from derivative-based FSI simulations.
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5.6.6.1 Time Integration

After obtaining aerodynamic forces, Eqs. (5.1a), (5.1b), (4.29a) and (4.29b) are then
solved numerically by using Newmark algorithm [82]. Here, with discrete time steps ∆t,
the displacement vector hj+1 and the velocity vector ḣj+1 at the next time step t = j+1
are calculated. As for the initial conditions, the modal coordinates are given a small
initial velocity and all other initial displacements and accelerations are set equal to zero.
The governing equations for the heave and pitch DOF are outlined as follows:

kh = kh +
2ch
∆t

+
2mh

∆t2
, kα = kα +

2cα
∆t

+
2mα

∆t2
, (5.108)

ph,j+1 =
1

2
ρU2
∞BL

[
KH∗1
U∞

ḣj +
KH∗2B

U∞
α̇j +K2H∗3αj +

K2H∗4
B

hj

]
, (5.109)

pα,j+1 =
1

2
ρU2
∞B

2L

[
KA∗1
U∞

ḣj +
KA∗2B

U∞
α̇j +K2A∗3αj +

K2A∗4
B

hj

]
, (5.110)

ph,j+1 = ph,j+1 + ch

(
2hj
∆t

+ ḣj

)
+mh

(
4hj
∆t2

+
4ḣj
∆t

+ ḧj

)
, (5.111)

pα,j+1 = pα,j+1 + cα

(
2αj
∆t

+ α̇j

)
+mα

(
4αj
∆t2

+
4α̇j
∆t

+ α̈j

)
, (5.112)

which give response at next time step as follows:

hj+1 =
ph,j+1

kh
, αj+1 =

pα,j+1

kα
, (5.113)

ḣj+1 =
2

∆t
(hj+1 − hj)− ḣj, α̇1 =

2

∆t
(αj+1 − αj)− α̇j, (5.114)

ḧj+1 =
4

∆t2
(hj+1 − hj)−

4

∆t
ḣj − ḧj, α̈j+1 =

4

∆t2
(αj+1 − αj)−

4

∆t
α̇j − α̈j, (5.115)

where kh, kα are the effective stiffness in heave and pitch, respectively. kh, kα are
the stiffness ch, cα are the damping and mh, mα are the mass in heave and pitch,
respectively. ph,j+1, pα,j+1 are the self-excited force as given in Eq. (4.29a) and (4.29b).
ph,j+1, pα,j+1 are the effective force in heave and pitch, respectively. ∆t is the time

step. h, α are the displacement and rotation ḣ, α̇ are the velocity and ḧ, α̈ are the
acceleration in heave and pitch, respectively. Subscripts j and j+1 correspond to current
and next time steps, respectively. L is the element length.

5.6.6.2 Response Frequency Determination

After calculating the response for heave and pitch the next step is to identify the
frequencies of the computed response. The usual way of calculating frequency is to
apply Discrete Fast Fourier Transform (DFFT). However, for such small data set
where only a few points have been calculated, this approximation would be insufficient.
Therefore, another approach is used where the calculated response is assumed as a simple
harmonic function and fitting is performed with another function of known parameters
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thus calculating frequency indirectly. This method is found much more accurate than
the DFFT. The equations of the assumed function are:

hfit = h sin
(
ωht− φh

)
, αfit = α sin

(
ωαt− φα

)
, (5.116)

ḣfit = ωhh cos
(
ωht− φh

)
, α̇fit = ωαα cos

(
ωαt− φα

)
, (5.117)

ḧfit = −ω2
hh sin

(
ωht− φh

)
, α̈fit = −ω2

αα sin
(
ωαt− φα

)
, (5.118)

where hfit, αfit the displacement ḣfit, α̇fit are the velocity and ḧfit, α̈fit are the
acceleration in heave and pitch of the assumed fitted function, respectively. h, ωh and
φh are the unknown static displacement, circular frequency and the phase angle of the
assumed fitted harmonic function, respectively.

Two schemes were used to apply the fitting. The first scheme applies fitting on
the individual response of displacement, velocity and acceleration whereas the second
scheme considers the fitting on displacement, velocity and acceleration simultaneously.
The second scheme is found more efficient. The fitting function assumes velocity as
a derivative of displacement and acceleration as a derivative of velocity. Therefore,
following equation was used

f̂
(
h, ωh, φh

)
=

p∑

k=1

(hcal − hfit)2
(k) +

p∑

k=1

(
ḣcal − ḣfit

)2

(k)
+

p∑

k=1

(
ḧcal − ḧfit

)2

(k)
, (5.119)

f̂
(
α, ωα, φα

)
=

p∑

k=1

(αcal − αfit)2
(k) +

p∑

k=1

(α̇cal − α̇fit)2
(k) +

p∑

k=1

(α̈cal − α̈fit)2
(k) (5.120)

where hcal, αcal are the displacement and rotation, ḣcal, α̇cal are the velocity and ḧcal,
α̈cal are the acceleration in heave and pitch calculated from Eqs. (5.113), (5.114) and
(5.115). p is the number of selected points for fitting. f̂ is the target function which
needs to be minimised. Here, the aim is to minimise the square of the difference between
the calculated response and fitted function. An optimisation solution is required to
apply fitting of the assumed function to the calculated response. The fitting is applied
separately to heave and pitch responses. The frequencies determined for both cases are
then compared.

5.7 Fully-coupled CFD Simulations (Model#5)

The 2D flow simulations on bridge decks have found to provide a promising agreement
for the prediction of coupled flutter limit with wind tunnel experiments [241]. These
simulations could be used as a supplementary tool to wind tunnel testing for
preliminary analysis. Often the simulations are performed by free or forced oscillation
methods to compute aerodynamic derivatives and then calculating flutter limit by using
semi-analytical methods in frequency or time domain. But these simulations do not
represent the actual response of the system at or near the flutter limit because the
aerodynamic derivatives are measured at some fixed amplitude and are sometimes
extrapolated which may lead to erroneous results.

The FSI simulations are time-domain analyses performed using the interaction between
flow and a rigid body as well as its motion is incorporated into the simulation.
The incompressible Navier-Stokes equations are fully coupled to a rigid body which
is elastically suspended on springs with lumped mass. The section of the bridge is
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5.7. Fully-coupled CFD Simulations (Model#5)

considered to move in its DOF heave, pitch and lateral motion. Often only the first
bending mode and the first torsional mode are considered to contribute to the response.

The instantaneous application of the full wind speed to an initially stationary structure
leads to large transient initial motions from which it is difficult to extract solid
conclusions about the stability of small oscillations. This can be avoided by using large
fictitious damping only for first few time steps and then replacing the actual damping
values [241].

Several studies [128, 242, 243, 244, 245] have been performed to show the application
and effectiveness of the approach on different test cases. It has the advantage of
simultaneous force measurement and flow visualisation at each point of the domain.
Some other examples of fully-coupled CFD simulations to compute flutter limits are
given in Table A.1, A.2 and A.3.

The concept of dimensional reduction to 2D can be applied for line-like structures where
the geometrical properties, as well as flow properties, remain unchanged along the entire
length. The contribution of higher modes is generally low in the long-span bridge flutter.
Therefore the 2D approach can provide a reasonable prediction of the flutter limit;
however, this contribution can be sometimes significant and can not be ignored. The
multi-slice approach can then be used to consider the additional modes where each slice
acts as a separate 2D flow model and the structure is coupled with the help of structural
modes. However, this approach has a limitation in contrast to the full aeroelastic model
in wind tunnel that the aerodynamic force correlation is not established.

5.7.1 2D Simulations

The 2D numerical aerodynamic analysis using CFD based on the VPM has attracted
much attention in the recent past. Typically 2D methods are used where the flow
problem can be approximated for line-like structures which are analogous to section
model testing in wind tunnels.

The procedure to compute flutter limit, in this case, is illustrated in Figure 5.7. The flow
solver uses the coupled analysis of the vertical motion and rotation of a 2DOF spring
supported section model. The coupling of fluid dynamics solution and the structural
dynamics is done at every time step. The pressure on the surface of the body is
integrated to get the resultant force in terms of lift and moment. These are associated
with the 2DOF of the structural system. The equations of motion for the system are
solved by time marching structural dynamics solution. A stiffness matrix is then created
and the solution is performed. Rayleigh damping is used to model structural damping,
for which the damping matrix is proportional to the combination of mass and stiffness
matrices (see Section 4.2.4).

The simulations are run at different wind speeds and the response is recorded. The
wind speed which shows divergent oscillatory response is the flutter limit. At this wind
speed, the response to vertical displacement and rotation are coupled and the section
oscillates with a different frequency than natural bending or torsion frequency which is
the flutter frequency.
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Start/Input
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Figure 5.7: Flow chart to calculate flutter limit from fully-coupled CFD simulations.

5.7.2 Quasi-3D Simulations

The aerodynamic forces along the length of the structure are not fully correlated. In
a 2D model, the effects coming from this aspect is not properly dealt with. The 2D
CFD model can be extended to 3D where the whole length of the bridge is divided
into discrete slices and each slice acts as a separate 2D wind model connected to each
other with the modal properties. Figure 5.8 demonstrates this multi-slice arrangement
along the structure. This quasi-3D approach is useful for the line-like structures such as
bridge decks, towers and chimneys.

Figure 5.8: Fully-coupled CFD Simulations: schematic of the quasi-3D (multi-slice)
arrangement along the bridge length.

The 3DOF are coupled at slice locations with the structural model. Selected modes
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can be included in the analysis and total structural response u is computed by modal
superposition as follows:

u =
N∑

j=1

wjφj, (5.121)

where wj is the modal displacement and φj is the mode shape of mode j. N is the
number of modes selected for the analysis. For further details about the method, the
reader is referred to [128].

5.8 Summary

The model combinations to perform flutter stability analysis have been explained in
this chapter. These models include fully-analytical, empirical, semi-analytical as well
as fully-coupled CFD simulations. The analytical Theodorsen expressions of a flat plate
and Scanlan aerodynamic derivatives are used to model the motion-induced aerodynamic
forces. Theodorsen theory has been used for fully-analytical 2D analysis, whereas
quasi-3D CFD simulations based on the VPM and the semi-analytical approaches have
been used to cover 3D analysis. These models include one of the earliest presented
for flutter analysis as well as state of the art models used in the design and analysis
of bridges constructed in the recent years. This provides a wide range of model
combinations to study the FSI.
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Chapter 6

Flutter Analysis of Reference Objects

6.1 Introduction

Models presented in Chapter 5 are applied here on the reference objects. The selected
reference objects for this purpose are also described. Two distinct reference bridges have
been selected; however, the detailed finite element model was made only for one of the
suspension bridges. Table 6.1 summarises some of the well-known examples of long-span
cable-supported bridges built around the world. It can be seen that there is a wide
range of structural parameter variation among the bridges depending upon the type and
structural configuration of the bridge. In addition to that, the type of cross section
introduces a large variation in the aerodynamic behaviour which sometimes becomes a
challenging task to deal with. The choice of the first reference object was based on the
availability of detailed information and structural properties. The second reference object
is a classical example of bridge collapse as a result of aeroelastic instability. Although a
detailed finite element model has not been made here for this bridge, extensive analyses
have been presented on its cross section and discussed in detail. The aerodynamic
characteristics for these sections are determined from the CFD simulations. The flutter
limit predictions of these structures have been made by using models explained in
Chapter 5 for 2D and 3D cases.

6.2 Reference Objects

The Lillebælt Suspension Bridge, Denmark, and the original Tacoma Narrows Suspension
Bridge, USA, presented in Figure 6.2 have been used as reference objects within
the study. The cross sections of selected bridges cover a wide range of structural
and aerodynamic parameters. Their variation allows to study various effects on the
aeroelastic stability behaviour. The elevations of these bridges are shown in Figure 6.1.
Figure 6.3 shows the simplified cross sections considered in this study for the Lillebælt
(Structure A) and the original Tacoma Narrows (Structure H) Suspension Bridges.
Railings and other attachments on the sections are not considered for simplicity.
These sections were modelled for the CFD forced vibration simulations to compute
motion-induced aerodynamic forces and for fully-coupled CFD analyses to directly
compute flutter boundary.

The structural parameters for these reference objects are given in Table 6.7. For
convenience, non-dimensional parameters can be used for structural properties as given
in Eq. (6.1).
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Table 6.1: Structural properties of some well known long-span cable-supported bridges
(cf. Table 3.1 and Eq. (6.1)) [3, 33, 34, 35, 36, 37, 38, 39, 40].

Bridge Name B m I fh fα µ rα γω

[m] [t/m] [tm2/m] [Hz] [Hz] [-] [-] [-]

Suspension

Messina 60.4 55.00 28000 0.061 0.080 24.1 0.374 1.31

Akashi-Kaikyo 35.5 43.79 9826 0.064 0.150 55.6 0.422 2.34

Zhejiang Xihoumen 36.3 - - 0.100 0.232 - - 2.32

Great Belt (Storebælt) 31.0 22.70 2470 0.099 0.272 37.8 0.336 2.75

Little Belt (Lillebælt) 33.0 11.66 1018 0.156 0.500 17.1 0.283 3.21

Tacoma Narrows 12.0 4.25 178 0.130 0.200 47.2 0.539 1.54

H̊alogaland 18.6 11.94 355 0.143 0.441 55.2 0.293 3.08

Bosporus 28.0 13.55 1352 0.162 0.371 27.7 0.357 2.29

Runyang - - - 0.124 0.225 - - 1.81

Humen - - - 0.112 0.426 - - 3.80

Cable-stayed

Sutong 41.0 - - 0.171 0.521 - - 3.05

Stonecutters 53.3 32.60 297 0.172 0.324 18.4 0.057 1.88

Indiano 22.4 17.40 545 0.573 1.179 55.5 0.250 2.06

Guama 14.2 22.51 567 0.331 0.649 178.6 0.353 1.96

Tsurumi 38.0 32.22 2880 0.204 0.486 35.7 0.249 2.38

Normandy 23.8 13.70 633 0.222 0.500 38.7 0.286 2.25

Footbridge

Siena 3.3 1.42 0.810 1.735 4.839 208.6 0.229 2.79

Turin 6.9 3.35 13.502 0.510 0.590 112.6 0.291 1.16

240 600 240

FunenJutland

335.3 853.4 335.3

Figure 6.1: Reference objects:
(top) Lillebælt Suspension Bridge (Structure A),
(bottom) original Tacoma Narrows Suspension Bridge (Structure H) (units: [m]).
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Figure 6.2: Reference objects:
(top) Lillebælt Suspension Bridge, Denmark,
(bottom) original Tacoma Narrows Suspension Bridge, USA
(pictures courtesy of wikimedia).
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.4
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Figure 6.3: Reference objects: simplified cross sections of
(top) Lillebælt Suspension Bridge (Structure A),
(bottom) original Tacoma Narrows Suspension Bridge (Structure H) (units: [m]).
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6.3. Modal Analysis of Reference Object

The non-dimensional parameters shown in Table 6.1 are as follows:

µ =
2m

ρB2
, (6.1a)

rα =

√
I

mB2
, (6.1b)

γω =
ωα
ωh
, (6.1c)

ξ = ξh = ξα, (6.1d)

where µ is the ratio of the mass of the deck to the mass of the air moved by the deck,
rα is the non-dimensional radius of gyration of the deck, γω is the still air frequency
ratio between pitch and heave and ξ is the damping ratio mode of vibration.

The Lillebælt Suspension Bridge consists of a steel box girder deck with 1080 m
suspended span. It is a bridge with a cable sag of 67 m and navigation height of
44 m. The measured frequencies from a 1:200 scaled bridge model, and other details
about the bridge can be found in the design reports [33, 246].

6.3 Modal Analysis of Reference Object

The analysis of structures in the mode-space is a convenient approach to calculate
the response of a complex structure. A limited number of modes are used in this
approach. Therefore, it is important to know which modes contribute more to the
overall response. The mode shapes only describe the behaviour of the structure when
oscillating at a certain natural frequency but does not provide the information about
the mode contribution. Effective modal mass is used for this purse which describes the
participation of effective mass for a given mode in a respective direction. Larger values
of effective mass imply larger contribution to the modal response. The normalisation of
modal mass is often done with respect to the deck.

The mode shapes and frequencies of the bridge are required for the flutter analysis.
This information provides structural behaviour without any influence of wind. A finite
element model of the Lillbælt Suspension Bridge was prepared from the information of
the bridge provided in [33]. A commercially available finite element software SOFiSTiK
was used for this purpose. The model was calibrated using the information provided in
[246]. Beam elements were used to model the deck and tower whereas cable elements
were used for main cable and suspenders. The deck and tower were connected using
springs. The stiffness of these springs was then varied in the calibration process. The
calibrated model frequencies are compared with the required frequencies in Table 6.2.
A perfect match between the first symmetrical bending and first symmetrical torsion
frequencies was achieved; however, discrepancies are seen in the second unsymmetrical
bending frequency. The objective here was to achieve relatively good agreement for
the first symmetrical modes as often these modes are considered more important for
flutter analysis. The frequency of unsymmetrical torsional mode was not provided in
the reference literature.

This finite element model provides several modes which do not excite the deck and
therefore are not important for flutter analysis. Figure 6.4 shows full 3D model of the
bridge whereas Figure 6.5 shows first bending and first torsional modes. The bridge
deck is not continuous along the whole suspended span length. There exists a special
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CHAPTER 6. FLUTTER ANALYSIS OF REFERENCE OBJECTS

Table 6.2: Natural frequencies from the calibrated finite element model of the Lillebælt
Suspension Bridge (units: [Hz]) (cf. Figure 6.6).

Mode Bending mode Torsion mode

symmetrical unsymmetrical symmetrical unsymmetrical

Measured [246] 0.156 0.153 0.500 -

Achieved 0.156 0.161 0.500 1.031

joint at the main tower which connects the main span with the side span. This joint
is known as ‘wind bearing’ and is shown in Figure C.1. For this reason, some torsional
modes show discontinuous behaviour at the location of main towers.

Figure 6.4: View of full 3D finite element model of the Lillebælt Suspension Bridge.

Figure 6.5: Mode shapes of the Lillebælt Suspension Bridge from finite element model:
(top) vertical bending mode,
(bottom) torsional mode.

Some more details of deck modes are provided in Figure 6.6 where first 8 bending modes,
first 4 torsion and first 4 lateral modes are shown. In addition to that, the frequencies
and modal masses of these modes along with their description are listed in Table 6.3.
Furthermore, these selected modes are categorised into symmetrical and unsymmetrical
modes which are later used in the multimode flutter analysis. The description of the
first 50 modes is also provided in Table C.1 and C.2. The modes of the deck are
only important here to be considered for flutter analysis; however, other modes are also
shown for comparison which include tower mode and cable modes.
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Figure 6.6: Mode shapes of the Lillebælt Suspension Bridge from finite element model:
(top) vertical bending modes,
(middle) torsional modes,
(bottom) lateral bending modes
( ) vertical displacement,
( ) rotation,
( ) lateral displacement (cf. Table 6.3).
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Table 6.3: Modal properties from the finite element model of the Lillebælt suspension
bridge (cf. Figure 6.6) (cf. Table C.1 and C.2).

Mode Frequency Modal mass Mode type

number [Hz] [kg] [kgm2]

Vertical bending modes

1 0.156 4,224 1st symmetrical vertical

2 0.161 4,193 1st unsymmetrical vertical

5 0.294 3,000 2nd symmetrical vertical

6 0.460 3,378 2nd unsymmetrical vertical

11 0.674 4,542 3rd symmetrical vertical

18 0.903 3,258 3rd unsymmetrical vertical

22 1.187 3,289 4th symmetrical vertical

28 1.456 4,009 4th unsymmetrical vertical

Torsional modes

8 0.500 3,89,789 1st symmetrical torsional

20 1.031 3,66,706 1st unsymmetrical torsional

27 1.391 3,36,512 2nd symmetrical torsional

36 1.843 3,22,336 2nd unsymmetrical torsional

Lateral bending modes

4 0.287 3,501 1st symmetrical lateral

21 1.116 3,993 1st unsymmetrical lateral

44 2.295 3,949 2nd symmetrical lateral

47 2.644 3,055 2nd unsymmetrical lateral

The modal equivalent distributed mass and mass moment of inertia M̃i can be obtained:

M̃i = m̃y

∫

L

φ2
yidx+ m̃z

∫

L

φ2
zidx+ m̃θ

∫

L

φ2
θidx, (6.2)

where m̃y, m̃z and m̃ are the distributed masses for mode i in translational y-axis,
translational z-axis and rotational about x-axis. In case of pure vertical bending mode,
the modal contribution in lateral and rotational directions will be zero and only one
term remain as

m̃z =
M̃i∫

L
φ2
zidx

. (6.3)

A similar procedure can be repeated for other uncoupled modes.

The focus of this study is related to aeroelastic instabilities; however, effective modal
mass provides useful information about the structural characteristics. Figure 6.7 shows
the effective modal mass of the deck from the Lillebælt finite element model with respect
to the total effective mass of the first 50 modes. The figure shows an effective mass in
three directions i.e. lateral (along y-axis), vertical (along z-axis) and rotational (about
x-axis). The effective modal mass Γi can be computed as

Li =

∫

L

φT
i (x) M0dx, (6.4)
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6.4. Aerodynamic Properties from CFD Simulations

Γi =
Li
Mi

. (6.5)

where M0 is the mass matrix.

For any mode, if the peak modal values appear in a separate direction, this shows that
the mode is uncoupled whereas for coupled modes, the peak appears in more than one
directions. This also indicates that there is not a single mode in any direction which
gives more than 20% contribution. This implies that there is a need to consider more
modes in the response calculation for such type of bridges. However, for flutter analysis,
other factors play an important role such as frequency separation of modes and mode
shape similarity. Therefore only effective modal mass is not sufficient to select the modes
for a simple two-mode analysis.
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Figure 6.7: Modal contribution from the model of the Lillebælt Suspension Bridge,
(top) translational in y-axix,
(middle) translational in z-axis,
(bottom) rotational about x-axis.

Figure 6.8 shows the cumulative contribution of the effective modal mass in each
direction. This sum is 1 or 100% for the first 50 modes. The jumps in the curves
show the contribution of the mass in the mode in that direction.

6.4 Aerodynamic Properties from CFD Simulations

Motion-induced aerodynamic forces for real cross sections can be determined from
numerical forced vibration simulations on the 2D section models. The resulting lift
force and moment time histories are used to compute the aerodynamic derivatives as
explained in Section 4.4.2.
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Figure 6.8: Cumulative modal mass contribution from the model of the Lillebælt
Suspension Bridge:
( ) vertical bending,
( ) torsional,
( ) lateral bending.

A flow solver VXflow developed by Morgenthal [128] based on the VPM has been used
here. Static, as well as forced vibration simulations, have been performed on the bridge
cross sections. Aerodynamic derivatives then can be computed in a least-squares sense
from the resulting force and moment time histories of the sections. The CFD code
has already been validated before in [120, 121, 122, 123] and shown to have acceptable
results, therefore, this study does not focus on the validation of the code.

6.4.1 Simulations on a Flat plate

Forced vibration simulations are performed first on a thin flat plate and compared with
the analytical values. A thin rectangular section of aspect ratio (B/D=100) has been
used in the CFD simulations as shown in Figure 6.9. The simulations ensure no-slip
boundary condition. Table 6.4 shows numerical parameters used in these simulation.
The simulations are carried out to reach non-dimensional time step t∗= tU∞/B around
45. Here t is the dimensional time. The section is given a predefined displacement or
rotational oscillations with known period and amplitude as shown in Figure 6.10.

Figure 6.9: Forced vibration simulation on a flat plate (aspect ratio 100): instantaneous
vortex pattern.

The aerodynamic derivatives for the flat plate section are then computed the measured
lift CL(t) and moment CM(t) as described before in Section 4.4.2. The resulting
aerodynamic derivatives are plotted in Figure 6.11 where analytical flat plate values
are also shown for comparison.

Aerodynamic derivatives predicted from the CFD simulations are compared to the
analytical values of a flat plate from Theodorsen theory. Figure 6.11 shows that all
the aerodynamic derivatives match reasonably well except A∗4. It can also be seen that
the aerodynamic derivatives from forced heave simulation show fewer discrepancies as
compared to the aerodynamic derivatives from forced pitch simulations where at higher
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Figure 6.10: Schematic of forced vibration simulations:
(left) forced heave motion,
(right) forced pitch motion.

Table 6.4: Forced vibration simulations on a flat plate (aspect ratio 100): numerical
parameters.

Nstep 8000 vr 2-16

Npanel 336 t∗ 48

Lpanel [m] 0.2 To [s] 6.6-52.8

∆t∗ 1.0 U∞ [m/s] 10

∆t [s] 0.0198 ho [m] 0.5

ν [m2/s] 0.000015 αo [◦] 5

Nparticle 80,000 Re 22× 106

reduced speeds vr, the difference becomes greater. This comparison is not sufficient to
see the prediction quality of these aerodynamic derivatives. The aerodynamic derivatives
are used in computing flutter limit, therefore flutter limit could also be used as a quality
measure. For this purpose flutter limit was determined using aerodynamic derivatives
and structural properties of Structure A (cf. Table 6.7). Figure 6.12 shows the effect each
of aerodynamic derivative of thin rectangular plate computed from the forced vibration
simulations on the flutter limit by replacing each analytical flat plate derivatives with the
one computed from the CFD. This means that for the case of H∗1 all of the analytical
flat plate aerodynamic derivatives were used from Eq. (4.35) except H∗1 which was taken
from the CFD simulations as shown in Figure 6.11 with dot symbols. It can be seen
in Figure 6.12 that A∗1, A∗3 and A∗4 show the most significant effect in the flutter limit
prediction for this case. However, often aerodynamic derivatives H∗4 and A∗4 are of little
significance [247] and are ignored in the analysis. The representations of motion-induced
forces initially introduced by Scanlan and Tomko [97] also did not include aerodynamic
derivatives H∗4 and A∗4. It is important to mention here that it is not expected to get
exactly the same aerodynamic derivatives as the assumptions made in the analytical
approach are different than in the CFD simulations. The main idea of generating these
plots is to provide a quantitative comparison of the computed aerodynamic derivatives
from numerical simulations and analytical values.

6.4.2 Simulations on Reference Sections

The forced vibration simulations have been performed separately in the sinusoidal heave
and pitch motions. These simulations provide aerodynamic derivatives H∗i and A∗i
(with i=1,...,4). The lateral aerodynamic derivatives could not be computed from the
CFD simulations as the lateral forced vibration scheme is not yet implemented in this
CFD code. These tests are often not performed. Therefore quasi-steady values were
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Figure 6.11: Aerodynamic derivatives for flat plate:
( ) Theodorsen theory,
( • ) forced vibration analysis on a flat plate (aspect ratio 1:100).
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Figure 6.12: Variation in flutter prediction by replacing each time a single aerodynamic
derivative obtained from the CFD simulations in analytical flat plate aerodynamic
derivatives (using dynamic properties of Structure A):
(left) change in critical flutter limit,
(right) change in critical flutter frequency.
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selected to be used for the lateral aerodynamic derivatives as provided in Table 5.3.
The quasi-steady aerodynamic derivatives are the functions of time averaged static wind
coefficients (CD, CL and CM) and their slopes (C ′D, C ′L and C ′M) at zero angle of attack
(θ = 0) of the section. Therefore static simulations were performed first on Structure A.
The flow past the bridge section was simulated to compute time averaged (or static)
wind coefficients of drag CD, lift CL and moment CM for a various angle of attacks θ.
The slopes of coefficients were also calculated by fitting a linear function. The results
of the simulations are presented in Figure 6.13.
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Figure 6.13: Static simulations on Structure A: static wind coefficients,
(◦) CD, (�) CL, (4) CM
(at θ=0, CD=0.422, C ′D=0.002, CL=-0.008, C ′L=0.111, CM=0.0, C ′M=0.002).

The forced vibration simulations were then performed for Structure A and Structure H
over a range of reduced speeds for the reference sections (cf. Figure 6.1). The
aerodynamic derivatives were then computed from the resulting force and moment time
histories. The aerodynamic derivatives are shown in Figure 6.16. Analytical values
for a flat plate are also plotted for comparison. The quality of the results varies
along the vr range depending on different factors such as time step, the length of
simulated time history and the quality of the least-squares fit. In Wind Engineering,
aerodynamic derivatives H∗4 and A∗4 are often neglected and are considered insignificant
in the prediction of flutter limit [247]. Table 6.5 and 6.6 provide numerical parameters
for the forced vibration simulations performed on Structure A and Structure H.

Figure 6.14 shows instantaneous frames from the simulations performed on Structure A.
It can be seen that the vortices generated from the section create a wake on the
downstream side. As the section is streamlined, the wake is not wide which implies that
the lift forces created by the vortex shedding are smaller but have higher vortex shedding
frequency. It is important to note that the effect of vortex shedding is removed in the
measured lift and moment time histories by least-squares fit to compute aerodynamic
derivatives; however, the forces generated by the vortex shedding may influence the
quality of the fit. It can be visualised in Figure 6.15 that for Structure H, larger
vortices are formed which creates a wider wake on the downstream side. The vortices
created in the concave region are trapped for some instances inducing larger pressure
on that face which results in increasing the torsional moment on the section.
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Figure 6.14: Forced vibration simulation on Structure A: instantaneous velocity fields
from
(left) forced heave simulations with ho = 0.015B
(right) forced pitch simulations with αo = 5◦ (cf. Table 6.5).

Table 6.5: Forced vibration simulation on Structure A: numerical parameters
(cf. Figure 6.14).

Nstep 8,000 vr 2-16

Npanel 340 t∗ 48

Nparticle 80,000 To [s] 6.6-52.8

∆t∗ 1.0 ho [m] 0.5

Re 22× 106 αo [◦] 5

Lpanel [m] 0.2 ∆t [s] 0.02
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Figure 6.15: Forced vibration simulation on Structure H: instantaneous velocity fields
from
(left) forced heave simulations with ho = 0.042B
(right) forced pitch simulations with αo = 5◦ (cf. Table 6.6).

Table 6.6: Forced vibration simulation for Structure H: numerical parameters
(cf. Figure 6.15).

Nstep 10,000 vr 1-8

Npanel 328 t∗ 85

Nparticle 70,000 To [s] 1.2-9.6

∆t∗ 1.0 ho [m] 0.5

Re 8× 106 αo [◦] 5

Lpanel [m] 0.1 ∆t [s] 0.01
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In the high Reynolds number range, the effect of Reynolds number is low and the wind
force only depends on section geometry. Starossek et al. [111] performed several tests
in water tunnel to determined the aerodynamic derivatives for different cross sections
and studied the effect of amplitudes and Reynolds number. It was found that Reynolds
number has an insignificant effect on the prediction of aerodynamic derivatives.

Some important factors which must be considered in performing the forced vibration
simulations are as follows:

� Relative amplitude of vortex shedding forces and motion-induced forces: if the
peaks from vortex shedding forces are larger in the force time histories as
compared to motion-induced forces then the fitting quality may decrease. This
can be improved by using the larger amplitude of oscillation for forced vibration
simulations.

� Length of force time-history: there should be a sufficient number of cycles
completed to achieve a better quality fit. At least 5 to 6 cycles of oscillations
are necessary.

� Period of oscillation: this is also related to the length of time series. The period
of oscillation is decided by the required reduced speed. If the period is large, then
computational cost increases.

� Size of the time step: this should be decided based on capturing the motion of
the section as well as resolving vortex shedding and flow around the body. The
vortex shedding frequency is often significantly higher than the frequency of forced
oscillation in these simulations.

� Number of panels: this should be adequate so that enough particles are generated
for the solution but should not be very large to avoid excessive runtime.

The aerodynamic derivatives for Structure A show similar values as that of analytical
values. This cross section is very similar to a flat plate and due to this reason it also
follows the similar trend. The aerodynamic derivative H∗1 is negative for the whole range
of reduced speed vr for which it is computed. This shows a stable SDOF behaviour of
this section against vertical instability. The aerodynamic derivative A∗2 is related to the
SDOF torsional stability. Negative values of this derivative imply that this section is
also not prone to torsional flutter.

The aerodynamic derivative H∗1 for Structure H also show similar behaviour to that of
Structure A; however, the aerodynamic derivative A∗2 becomes positive after a certain
reduced speed vr which mean that this section is susceptible to the SDOF torsional
flutter. In such cases, the SDOF critical limit can be determined without the need
of performing an eigenvalue analysis as explained in Section 5.6.4. Such cross sections
with unstable behaviour can be avoided by selecting other types of cross sections which
are more streamlined or the behaviour of this cross section can be improved by using
fairings on the sides to make the cross section streamlined.

6.5 Flutter Limits of Reference Objects

In this section the models explained in Chapter 5 are applied on the reference objects
(cf. Section 6.2) to compute the flutter limits. The advantages and limitations of the
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Figure 6.16: Aerodynamic derivatives (H∗i and A∗i where i = 1, . . . , 4):
( ) flat plate by Theodorsen theory,
forced vibration analysis on
( • ) Structure A and
( ◦ ) Structure H.

models are explained. The assumptions made during this process are also discussed at
each step and finally the flutter limits are predicted.

The structural properties of the selected reference structures are summarised in Table 6.7.
These parameters have been used in the 2D flutter analyses. For 3D analysis, structural
properties presented in Section 6.3 have been utilised. The non-dimensional parameters
are also presented in the last three columns of the table by using Eq. (6.1). Comparing
these non-dimensional parameters to the list of long-span bridges provided in Table 6.1
implies that the selected structures well represent the range of structural properties.
More discussion related to these non-dimensional parameters follows in Chapter 7.
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Table 6.7: Basic data and structural properties of the reference bridge sections [33][38].

Structure Span B m I fh fα ξh, ξα µ rα γω

[m] [m] [kg/m] [kgm2/m] [Hz] [Hz] [-] [-] [-] [-]

A 600 33 11,667 10,17,778 0.156 0.500 0.01 17.1 0.283 3.21

H 854 12 4,250 1,77,730 0.130 0.200 0.01 47.2 0.539 1.54

6.5.1 Fully-Analytical (Model#1)

Using the structural parameters for Structure A (cf. Table 6.7), and performing
eigenvalue analysis presented in Section 5.4, the flutter limit was found 94 m/s. The
flutter limit is determined when the real part of at least one eigenvalue becomes positive
with the corresponding positive imaginary part. Figure 6.17 shows the eigenvalue paths
from the flutter analysis of a 2DOF system using Theodorsen analytical flat plate values.
The imaginary parts of the eigenvalues are related to the oscillations whereas the real
parts describe the stability. When the real part of eigenvalues with increasing wind
speed becomes positive, the system becomes unstable and the flutter limit is reached. If
the imaginary part becomes zero, this means that there is no oscillation in the response
and when this eigenvalue becomes positive real that means the system has divergence
instability.
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Figure 6.17: Fully-analytical model: sample 4 eigenvalue paths λn as wind speed U∞
increases from 1 m/s to the instability limit of 94 m/s using Eq. (4.24a)
(start U∞=1 m/s, ∆U∞=0.5 m/s).

The analysis was also performed on the reference structures by considering different
representations of Theodorsen circulation function (cf. Section 4.3.1). The resulting
flutter limits are compared in Table 6.8. Eq. (4.24a) uses Hankel and modified Bassel
functions. The results show that the prediction by Eq. (4.24f) is closest to Eq. (4.24a),
whereas maximum difference from Eq. (4.24a) is shown by Eq. (4.24e) which is upto
3%.

A major limitation of this approach is that it does not consider the shape of the
structure which plays a decisive role in the flutter analysis. It considers a 2D flow
and assumes for a 2DOF system that the selected heave and pitch modes have exactly
the same mode shapes and are more likely to couple. However, the mode coupling
greatly depends on the actual mode shapes and the frequency separation between the
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Table 6.8: Fully-analytical model: flutter limits computed using different Theodorsen
circulation function approximations (cf. Table 6.7).

Eq. (4.24a) (4.24b) (4.24c) (4.24d) (4.24e) (4.24f) (4.24g)

Structure A

Ucr [m/s] 93.85 95.14 93.98 93.05 91.80 93.85 93.65

Ucr/Bfh [-] 18.23 18.48 18.26 18.07 17.83 18.23 18.19

ωcr [rad/s] 2.075 2.009 2.051 2.074 2.039 2.076 2.064

vcr [-] 8.62 9.05 8.72 8.58 8.59 8.62 8.67

Structure H

Ucr [m/s] 26.15 26.35 25.98 25.84 25.26 26.15 25.94

Ucr/Bfh [-] 16.76 16.89 16.65 16.57 16.19 16.76 16.63

ωcr [rad/s] 1.100 1.096 1.102 1.104 1.100 1.100 1.103

vcr [-] 12.62 12.66 12.35 12.33 12.14 12.62 12.34

modes. Therefore, it is often important to consider the shape-wise similarity of the
relevant mode pairs.

6.5.2 Empirical Approach (Model#2)

During the early design stage of the long-span bridges, empirical formulas may be used
to estimate the flutter limit. These expressions are easy to use and do not require
detailed calculations. Basic structural parameters are required as input and flutter limit
can be calculated without performing an eigenvalue analysis. These are usually based
on flat plate assumptions; however, the effect of cross section geometry is introduced as
a multiplying factor obtained from already existing curves for the similar sections.

Table 6.9 shows the results of flutter limit predictions by the equations explained in
Section 5.5. Most of the values by these equations are close to the fully-analytical
prediction made in Section 6.5.1 for Structure A. The values obtained through
Eqs. (5.25) and (5.26) over estimate the flutter limits. For Structure H, the flutter
limit obtained by Eq. (5.20) is also higher than that from fully-analytical prediction
shown in Table 6.8.

Table 6.9: Empirical approach: flutter limits computed with different empirical models
(cf. Table 6.7).

Eq. (5.20) (5.21a) (5.21b) (5.21c) (5.21d) (5.21e) (5.23) (5.24) (5.25) (5.26)

Structure A

Ucr [m/s] 92.1 90.0 90.3 90.6 92.0 90.6 90.6 93.0 108.4 102.5

Ucr/Bfh [-] 17.9 17.5 17.5 17.6 17.9 17.6 17.6 18.1 21.1 19.9

Structure H

Ucr [m/s] 33.9 24.0 24.1 24.1 24.5 24.1 24.1 24.8 29.5 34.2

Ucr/Bfh [-] 21.7 15.4 15.4 15.5 15.7 15.5 15.5 15.9 18.9 21.9

The difference in Selberg’s predictions is due to representations and assumptions in the
constant parameters. This approach is valid only for 2D cases and the mode shapes
are assumed to be perfectly similar. Although structural damping is less significant for
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flutter limit prediction as compared to the other parameters but these equations do not
take into account its effect. The common problem in 2D analyses is that the vertical
bending and torsional modes need to be selected in advance by assuming that these
modes will provide the most critical outcome and if the wrong modes are selected, the
result will be inaccurate.

The divergence limit can also be calculated from Eq. (5.19). Using properties of
Structure A and Structure H, the divergence critical limits were calculated as 96.9 m/s
and 33.9 m/s respectively.

6.5.3 Derivative-based Eigenvalue Analysis (Model#3)

The model combinations explained in Section 5.6.5 were used here to compute flutter
limits for the reference sections (cf. Section 6.3). The aerodynamic derivatives determined
from the CFD forced vibration simulations presented in Section 6.4 have been used
here. Structural parameters given in Table 6.7 were utilised to compute the flutter
limit by performing eigenvalue analysis. The flutter limit for Structure A was calculated
at 94 m/s. For comparison, flutter limit predicted by using aerodynamic derivatives
presented in Section 6.4.1 for flat plate (aspect ratio 100) is 89 m/s.

Figure 6.18 shows the results of eigenvalue solution. The four eigenvalues start with
increasing wind speed and when at least one eigenvalue enters the positive real quadrant,
and the corresponding effective damping becomes zero which shows an unstable response.

Any point on one of these four eigenvalue paths has coordinates represented by its real
and imaginary parts. When the eigenvalue paths move towards negative and eventually
touch zero imaginary axis, the oscillating response vanishes. Since the real part is
negative, the response would decay and the structure will be stable. If the wind speed
is further increased, the imaginary part remains zero, whereas the real part becomes
positive which indicates the divergence limit. This is a hypothetical situation when
the flutter boundary is already reached, the system is unstable; however, in the case
when onset of flutter is higher, static divergence may reach earlier. Often the torsional
frequency of the bridge is larger than the bending frequency and at very high wind
speeds, the torsional frequency decreases as a result of the decrease in the effective
torsional stiffness and the bridge starts to oscillate with a coupled frequency.

The results of the analysis are presented in Table 6.10. For comparison, results from by
using analytical flat plate derivatives for Structure A and Structure H are also displayed
which are same as that from Model#1. It is clear from the results that the analytical
flat plate prediction diverges significantly from the results obtained by using numerically
computed aerodynamic derivatives for the bluff cross sections; however, for a streamlined
section, the flutter limit predictions are rather similar.

The surface plots presented in Figure 6.19 help to understand how the effective damping
ratios and the effective frequencies change in the increasing reduced speed vr and
oscillation frequency ω space.
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Figure 6.18: Derivative-based eigenvalue analysis: flutter stability analysis for 2DOF
system using properties of Structure A and analytical aerodynamic derivatives as wind
speed U∞ increases from 1 m/s to the instability limit of 94 m/s
(top) sample 4 eigenvalue paths λn,
(middle) effective damping ratios ξn,
(bottom) effective frequencies ωn.
( ) heave mode,
( ) pitch mode
(start U∞=1 m/s, ∆U∞=0.5 m/s, ωcr=2.08 rad/s, Ucr/Bfh=18.2).
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Table 6.10: Derivative-based eigenvalue analysis: flutter stability analysis for the 2DOF
system.

Structure Aerodynamic Ucr Ucr/Bfh ωcr vcr

derivatives [m/s] [-] [rad/s] [-]

A Analytical 93.8 18.2 2.08 8.6

H Analytical 26.2 16.8 1.10 12.6

A CFD 94.1 18.3 2.21 8.2

H CFD 11.1 7.1 1.23 4.9
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Figure 6.19: Derivative-based eigenvalue analysis: flutter stability analysis for 2DOF
system using properties of Structure A and analytical aerodynamic derivatives,
(left) effective damping ratios ξn and
(right) effective frequencies ωn in reduced speed vr and oscillation frequency ω space.
(�) heave mode,
(�) pitch mode,
( ) positions where effective damping is zero and positions where effective heave and
pitch frequencies coincide.
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6.5.3.1 Divergence Limit

The divergence wind speed predicted by an empirical formula in Section 6.5.2 for
Structure A is 96.9 m/s; however, using fully-analytical model it is calculated as
144.0 m/s. In eigenvalue analysis, the divergence limit is reached when the imaginary
part of eigenvalues vanishes and this eigenvalue moves towards the right when the real
part becomes positive as shown in Figure 6.20. Similarly, analysis was also performed
for Structure H and divergence limit was found to be 52.5 m/s, whereas it was predicted
to be 33.9 m/s by empirical formula.
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Figure 6.20: Derivative-based eigenvalue analysis: divergence limit for 2DOF system
using properties of Structure A and analytical aerodynamic derivatives
(start U∞=1 m/s, ∆U∞=0.5 m/s).

6.5.3.2 Alternative Approach

Flutter limit can also be computed by treating flutter equations as real and imaginary
parts as described in Section 5.6.5.1. Here, the real and imaginary equations are solved
for increasing wind speed to make them zero at the same time. This also requires
a two-level iterative procedure where at first the wind speed is assumed and at the
second level the oscillation frequency is assumed. At each selected wind speed, the
assumed oscillation frequency is tested if it nullifies both real and imaginary Eqs. (5.65).
Figure 6.21 shows a final curve which satisfies this condition where real and imaginary
parts touch the zero axis.

It becomes clear if the values for Eqs. (5.65) are calculated for a series of oscillation
frequency ω and the wind speed U∞ (or reduced wind speed vr). This approach is
presented in Figure 6.22 where two surfaces are shown representing real and imaginary
equations. First, the line is determined where these surfaces coincide each other. This
line then is traced where it touches zero vertical axis. That combination of ω and vr
will correspond to the critical limit.
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( ) imaginary Eq. (5.65b).
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6.5.3.3 Effect of Mode Shape

The 2D flutter analysis assumes that the selected bending and torsional modes have
exactly the same shapes. That means the value of Mode Shape Similarity Factor (MSSF)
shown in Eq. (5.70) is 1.0; however, in actual case the mode shapes may be different
and the value of the MSSF could be much smaller. Considering the mode shapes in
this manner is more realistic but leads to higher flutter limit prediction.

The study of the effect of mode shape is kept limited only to the Lillebælt Suspension
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Bridge model. The mode shapes shown in Figure 6.6 are used here to calculate mode
shape similarity between bending and torsional modes. The resulting mode shape
similarity matrix is shown in Table 6.11. Looking at the mode shapes, a rough estimate
of the possible value of the MSSF can be made such as it appears for the first bending
and the first torsional mode the value of the MSSF would be larger than the one from
the second bending and the second torsional mode. Similarly, there would be lower
value of the MSSF if the first symmetrical bending mode is considered with the first
unsymmetrical torsional mode. In some cases, it can also be possible to have a smaller
value of MSSF for the fist symmetric bending and first symmetric torsion mode. The
reason could be the bending restraint provided by the main cables in the first bending
mode as this mode requires elongation of the main cables.

The results shown in Table 6.11 also reflect similar outcome. The largest value of the
MSSF is obtained for modes φ1 − φ8. Other mode combinations show lower values and
the mode shapes which are dissimilar to each other show almost zero values. The largest
four values of the MSSF are highlighted as bold in the table which were selected to
be used in the flutter analysis to show their contributions. This table can also provide
information about which modes might couple in the multimode analysis.

Table 6.11: Mode shape similarity ψhα [-] matrix by combining bending and torsional
modes for the Lillebælt Suspension Bridge model (cf. Figure 6.6).

Bending Torsional modes

modes φ8 φ20 φ27 φ36

φ1 0.903 0 0.054 0

φ2 0 0.771 0 0.041

φ5 0.003 0 0.669 0

φ6 0 0.016 0 0.876

φ11 0.003 0 0.027 0

φ18 0 0.034 0 0.063

φ22 0.002 0 0.018 0

φ28 0 0.003 0 0.020

The flutter analysis is performed using two modes at a time considering the effect of
mode shapes by introducing the MSSF which is shown in Table 6.11. Analytical flat
plate aerodynamic derivatives have been used here to show only the effect of MSSF. It
is clear from the values obtained that the mode combination φ1 ∼ φ8 comprising of the
first bending and the first torsional mode would provides the lowest flutter limit. The
participation of the MSSF increased the flutter limit from 93.8 m/s to 96.0 m/s. Other
mode combinations show much higher critical limits and the MSSF further increases
these values as presented in Table 6.12.

Figure 6.23 illustrates the effect of the change in the MSSF on the flutter limits for
different mode combinations. It can be visualised that with the MSSF ψhα value of
1.0, the flutter limits corresponds to the bending and the torsional mode shapes which
are exactly the same. It can also be seen that the increase in the flutter limit with
the MSSF is nonlinear. The reason is that the MSSF is incorporated only in the
coupled aerodynamic derivatives and not in the direct aerodynamic derivatives in the
motion-induced aerodynamic forces.
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Table 6.12: Derivative-based eigenvalue analysis: flutter stability analysis for 2DOF
system using properties of Structure A and analytical aerodynamic derivatives
considering the effect of MSSF ψhα in the flutter analysis (cf. 6.11).

Mode coupling fh fα ψhα Ucr with ψhα Ucr without ψhα

Bending∼Torsional [Hz] [Hz] [-] [m/s] [m/s]

φ1-φ8 0.156 0.500 0.903 96.0 93.8

φ2-φ20 0.161 1.031 0.771 208.4 198.2

φ5-φ27 0.294 1.391 0.669 287.4 265.6

φ6-φ36 0.460 1.843 0.876 360.0 349.9
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Figure 6.23: Derivative-based eigenvalue analysis: flutter stability analysis for
2DOF system using properties of Structure A and analytical aerodynamic derivatives
considering the effect of MSSF ψhα in the flutter analysis,
(◦) φ1-φ8,
(�) φ2-φ20,
(4) φ5-φ27,
(5) φ6-φ36,
(fh1=0.156 Hz, first heave frequency)(cf. Table 6.12).
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6.5.3.4 Multimode Flutter Analysis

A multimode flutter analysis was performed on the Lillebælt Suspension Bridge model
using the approach explained in Section 5.6.5.2. Full-order analysis can also be made
using all modes of the bridge; however, to better understand the underlying physics
behind the phenomenon, different combinations of selected modes have been used here.
Only the deck modes are utilised in the analysis and the modes related to tower and
cables were not considered. In some cases, the significant effect of higher modes in the
flutter limit prediction was observed instead of considering only the fundamental bending
and torsional mode [101, 207, 212, 222, 230]. In this study, the analysis is restricted
only to consider deck modes.

A code was written in Matlab for multimode flutter analysis. This requires basic
information about the structure under study such as nodal coordinates, nodal mass,
element information, modal properties and aerodynamic derivatives. This information is
used to assemble the structure to perform multimode flutter analysis. Figure 6.24 shows
the model from the flutter analysis code with coordinate axes considered.

x

y

z

Figure 6.24: Model of the Lillebælt suspension bridge from multimode flutter analysis
code:
(top) 3D view,
(bottom) elevation.

A modal damping ratio of 1% has been used to model the structural damping. Some
basic deck modes are identified and shown in Table 6.3; however, the first 50 mode
shapes are listed in Table C.1 and C.2. The selected mode shapes are also shown in
Figure 6.6 where dominant vertical bending modes, lateral modes and torsional deck
modes are separately shown. It can also be visualised in this figure that the first
symmetrical torsional mode and the first unsymmetrical torsional modes show strong
coupling with the lateral bending. This implies that there exist structural coupling of
modes which is important to be noted before using these modes in the flutter solution.
After retrieving mode shapes from the modal analysis, the modal mass for each mode
shape is calculated. This is also provided in Table 6.3 and in Table C.1 and C.2 for
the first 50 modes.

The analysis was performed on the Lillebælt Suspension Bridge by using analytical
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aerodynamic derivatives as well as derivatives computed from the CFD simulations on
Structure A to compare with the flutter limit predicted from the 2D flutter analyses.
The results of this analysis are shown in Table 6.13 and Figure 6.25. The iterative
analysis is performed for the increment of wind speed U∞. The wind speed step ∆U∞
is adjusted in the code automatically such that near to flutter limit the step is reduced
to half for each iteration.

Table 6.13: Derivative-based eigenvalue analysis: multimode flutter analysis for the
Lillebælt Suspension Bridge (cf. Table 6.3 and Figure 6.6).

Mode combination Ucr Ucr/Bfh ωcr vcr Ucr/Ucr,I Time

[m/s] [-] [rad/s] [-] [-] [s]

Analytical aerodynamic derivatives for flat plate

I 1+8 98.1 19.05 1.984 9.4 1.00 <1

II 1+4+8 98.1 19.06 1.985 9.4 1.00 <1

III 2+20 220.4 42.81 3.633 11.6 2.25 <1

IV 2+20+21 217.7 42.30 3.471 11.9 2.22 1

V 1+4+5+8+27+44 98.0 19.04 1.991 9.4 0.99 2

VI 2+6+20+21+28+36+47 216.1 41.98 3.556 11.6 2.20 5

VII 1+4+5+8+11+22+27+44 98.1 19.05 1.990 9.4 0.99 4

VIII 2+6+18+20+21+28+36+47 217.2 42.20 3.522 11.7 2.22 7

IX all above 98.1 19.05 1.990 9.4 0.99 33

CFD aerodynamic derivative for Structure A

I 1+8 98.3 19.10 2.154 8.6 1.00 8

II 1+4+8 98.3 19.11 2.155 8.6 1.00 9

III 2+20 241.0 46.83 3.758 12.2 2.45 14

IV 2+20+21 246.8 47.95 3.415 13.7 2.50 18

V 1+4+5+8+27+44 101.0 19.62 2.123 9.0 1.02 35

VI 2+6+20+21+28+36+47 237.0 46.05 3.663 12.3 2.40 36

VII 1+4+5+8+11+22+27+44 98.3 19.10 2.158 8.6 0.99 56

VIII 2+6+18+20+21+28+36+47 244.4 47.48 3.506 13.2 2.48 44

IX all above 102.3 19.87 2.107 9.2 1.03 224

Considering only the first bending mode and the first torsional mode in multimode
flutter analysis provides flutter limit as 98.1 m/s. This is slightly higher as compared
to a 2D flutter analysis made by taking into account mode shapes in Section 6.5.3.3
which is 96.0 m/s. The reason for this could be the mass per unit length considered
in the 2D flutter analysis which was 11,677 kg/m (cf. Table 6.7); however, if the total
deck translational mass in z-axis (i.e. 12.5 t) is taken from the model and divided over
the deck length (i.e. 1080 m) the distributed mass results in 11,563 kg/m. The same is
the case with the torsional mass about x-axis which is 1089.5 tm2 for full deck length
and 10,08,700 kgm2/m for unit length that is lesser as compared to 10,17,778 kgm2/m
which was considered for 2D analysis (cf. Table 6.7). As it has been explained earlier
that the deck of the Lillebælt Suspension Bridge has special joints at the towers. The
reason for this reduction in mass is the discontinuation of the deck at these locations.
The actual distributed masses in translation and rotation directions can also be used in

113



6.5. Flutter Limits of Reference Objects

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Mode Combination
I II III IV V VI VII VIII IX

U
cr
/U

cr
,I

Figure 6.25: Derivative-based eigenvalue analysis: multimode flutter analysis using
(◦) analytical aerodynamic derivatives,
(�) CFD aerodynamic derivative for Structure A
(Ucr,I : flutter limit for mode combination I)(cf. Table 6.13).

the 2D flutter analysis and the flutter limit may be computed to show the difference.
However, in the full-mode analysis, it is also important to note that the modal mass is
calculated by the nodal mass and the corresponding modal displacements.

The results show that the symmetrical modes provide lowest flutter limit whereas
unsymmetrical modes provide much higher flutter limit indicating that the symmetrical
modes couple before. It is also observed that adding more modes does not decrease
flutter limit as expected. The eigenvalue paths are shown in Figure 6.26 for one of the
mode combinations. The corresponding effective frequencies and effective damping ratios
are also presented. These effective values are obtained after sorting and rearranging the
eigenvalues as explained in Section 5.6.5.2. Untreated values are shown in Figure C.2
for reference. The instability limit is achieved when at least one of the eigenvalues
become positive real or the effective damping becomes zero. The corresponding effective
frequency shows that how it has changed with increasing wind speed. The results of
multimode analysis by using CFD aerodynamic derivatives for Structure A are also
shown in Figure C.4 for selected mode combination (V). Untreated values are also shown
in Figure C.3 for reference.

The computational time is also important especially when such analysis are used for
the variance based sensitivity and uncertainty analyses. Figure 6.27 shows the relative
computation time with respect to the number of modes considered in the analysis. The
computation time increases exponentially by adding more modes. This also depends on
the type and complexity of the structure. A large number of nodes and a higher onset
of flutter requires more time of analysis.
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Figure 6.26: Derivative-based eigenvalue analysis: multimode flutter analysis for the
Lillebælt Suspension Bridge using analytical aerodynamic derivatives:
(top) eigenvalue paths λn as wind speed U∞ increases to the instability limit,
(middle) effective frequencies fn,
(bottom) effective damping ratios ξn,
(mode combination V, start U∞=1 m/s, ∆U∞=0.5 m/s, Ucr=98.0 m/s).
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Figure 6.27: Derivative-based eigenvalue analysis: computation time for multimode
flutter analysis (N : number of modes, tN=2: time for 2 modes only).

6.5.4 Derivative-based FSI Simulations (Model#4)

The approach presented in Section 5.6.6 has been applied and flutter limit for the
reference bridge was computed. The parameters presented in Table 6.14 have been used
in the analysis. The simulation is set to performed time integration for a total of 150
discrete points in time. As a result response for displacement, velocity and acceleration
are recorded for both heave and pitch cases where one cycle of oscillation has around 100
points. The effect of number of points per cycle on the results is shown in Figure 6.29a.
The least-squares fit is then performed by selecting 10 points on the response curve for
the fitting at a time and then with the increment of 1 again 10 points are selected. This
process is repeated 50 times. First few points in the calculated response are ignored to
have only steady response.

Table 6.14: Derivative-based FSI Simulations: numerical parameters.

Initial
velocity

Initial
displacement

Time step Start
velocity

Velocity
step

Convergence
limit

ḣ0 [m/s] h0 [m] ∆t [s] Ustart [m/s] Ustep [m/s] tol [-]

0.015 0.0 0.01 1 0.5 0.001

Figure 6.28 demonstrates the fitting on the displacement, velocity and acceleration
response using 10 selected points on the same time axis. This is done to make sure that
the most part of the cycle is covered instead of relying only on one value on the curve
which could lead to inaccurate results. These 50 frequency values are then averaged. The
same process is repeated for the pitch case and comparison of resulting frequencies (ωh
and ωα) is made. If frequencies differ then a new value of ω is considered otherwise the
response is checked if it is increasing or decreasing. The total work turns to a negative
which means a shift of negative aerodynamic damping to positive damping, and the
aerodynamic stability of the structure is thus altered. The wind speed is considered as
flutter limit if the response increases otherwise cycle is repeated with another value of
U∞.

The scheme was used to calculate the flutter limit for a 2DOF section model using
aerodynamic derivatives from forced vibration analysis of the Structure A (cf. Table 6.7)
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Figure 6.28: Derivative-based FSI Simulations: response fitting for frequency calculation,
(•) calculated response,
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Figure 6.29: Derivative-based FSI Simulations:
(right) relative error in the flutter limit computation with increasing numbers of points
defining one cycle of oscillation,
(left) accuracy of the computation with increasing number of points defining each mode.

and the flat plate (B/D = 100). The flutter limit was found to be 99 m/s for
Structure A and 92 m/s for the flat plate for the 2D case. The analytical flat plate
values of the aerodynamic derivatives were also used to calculate the flutter limit which
was found to be 96 m/s.

The approach from the 2DOF model was extended to the 3D model of the bridge
(cf. Section 6.3) in mode space and the flutter limits were computed. For this purpose,
the first bending and the first torsional modes were used. Mode shapes are defined using
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some number of stations. A larger number of stations describe better the modes shape
and therefore the effect of number of stations was also studied on the results computed
which is shown in Figure 6.29b. The flutter limit calculated for the quasi-3D model was
101 m/s for Structure A and 94 m/s for the flat plate.

The scheme was also used for a multimode analysis where the first three bending and
the first two torsional modes were considered. Table 6.3 and Figure 6.6 show the modal
data considered in the multimode analysis. The flutter limit found in this case was
95 m/s for both Structure A and the flat plate. Some effects of the higher modes were
observed in the deformed model of the bridge at flutter limit which were quantitatively
not so significant.

6.5.5 Fully Coupled CFD Simulations (Model#5)

The method explained in Section (5.7 has been used here to perform fully-coupled
CFD simulations on the reference sections. The same numerical flow solver which was
used for the forced vibration simulations has been used here. Structural parameters
given in Table 6.7 for Structure A and Structure H were used to model the sections
(cf. Figure 6.1). The cross sections were modelled suspended on springs representing
their structural properties. The simulations were performed at various wind speeds
to identify the flutter limit. At 95 m/s Structure A becomes unstable after some
cycles of oscillations. For Structure H, the divergent oscillations were observed at
15 m/s. Figure 6.30 shows flow visualisation in a CFD simulation for Structure A
and Structure H in a uniform flow.

The flutter analysis presented in Section 6.5.1 provides a rough estimate of flutter limit
which could be used to run the fully-coupled CFD simulations at wind speeds close to
this value.

Figure 6.30: Fully-coupled CFD simulations: instantaneous vortex pattern for
(top) Structure A,
(bottom) Structure H.

Figure 6.31 shows a gradual increase in the oscillation response of Structure A at
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different wind speeds around instability limit in a CFD simulation. The maximum
response amplitudes and response frequencies at different wind speeds are presented in
Figure 6.33.

Similarly, the oscillation response for Structure H for different wind speeds is shown
in Figure 6.32. The simulations for Structure H were also performed considering a
SDOF system in heave and in pitch separately. Figure C.5 and C.6 show the response
amplitudes from the simulations on SDOF system at different wind speeds. Considering
only vertical DOF, the section does not show instability for the selected wind speeds;
however, the maximum repose appears to increase with wind speed, whereas in case of
rotational SDOF simulations, the flutter instability limit is identified at a wind speed
of 16 m/s which is slightly higher than 2DOF coupled flutter limit (i.e. 15 m/s). The
maximum response amplitudes and response frequencies for SDOF and 2DOF systems
at different wind speeds are presented in Figure 6.34, Figure 6.35 and Figure 6.36.

Multi-slice simulations were preformed only for Structure A, as it requires a great
computational time and resources. Computational time for one multi-slice simulation
was up to 30 days. For multi-slice simulations, 12 slices were considered as shown in
Figure 6.37 with only first three bending and first two torsional modes. The flutter
limit was calculated as 95 m/s in this case.
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Figure 6.31: Fully-coupled CFD simulations: response of Structure A from single slice
2D simulations at wind speeds
(top to bottom) U∞=92-96 m/s.
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Figure 6.32: Fully-coupled CFD simulations: response of Structure H from single slice
2D simulations at wind speeds
(top to bottom) U∞=13-17 m/s.
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Figure 6.34: Fully-coupled CFD simulations: Structure H from 2DOF single slice 2D
simulations at wind speeds U∞=1-20 m/s,
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(�) heave mode,
(◦) pitch mode.
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Figure 6.35: Fully-coupled CFD simulations: Structure H from SDOF and 2DOF single
slice 2D simulations at wind speeds U∞=1-20 m/s,
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Figure 6.36: Fully-coupled CFD simulations: Structure H from SDOF and 2DOF single
slice 2D simulations at wind speeds U∞=1-20 m/s, response frequencies,
(�) 2DOF heave mode,
(◦) 2DOF pitch mode,
(4) SDOF heave mode,
(5) SDOF pitch mode.
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Figure 6.37: Fully-coupled CFD simulations: multi-slice (quasi-3D) simulations,
instantaneous velocity fields and vortex pattern of a 12-slice model of the Lillebælt
Suspension Bridge (cf. Section 6.2).
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6.6 Summary

The flutter phenomenon was studied employing various combinations of analytical
and numerical prediction models presented in Chapter 5. The Lillebælt Suspension
Bridge and the original Tacoma Narrows Suspension Bridge were used as study objects
(cf. Section 6.2). These structures were selected on the basis of a wider range of
their structural and aerodynamic characteristics. The structural representations were
dimensionally reduced to 2DOF section models calibrated from global models as well as
MDOF models. The 2DOF systems were analysed analytically as well as numerically.
Flutter analysis was also conducted by calculating the forced vibration response using a
time domain scheme. With this scheme, the generalised self-excited forces were calculated
based on the aerodynamic derivatives at each time step. The CFD simulations using
the VPM were also used to model the bridge section with its DOF. The results of the
analyses are shown in Table 6.15.

Generally, all models were able to predict the flutter phenomenon and relatively
close agreement was found for the particular bridge. There are some common
limitations in some models such as two-dimensionality of flow and considering only
flat plate. Fully-coupled CFD analyses have the advantage that no prior knowledge
as to the phenomenon needs to be inserted into the model. Three-dimensional
structural representations are superior over dimensionally reduced models in that no
prior knowledge as to the modes participating in the flutter coupling is required.
Fully-analytical models are more direct models and allow a better insight into the force
coupling. Simplified aerodynamic models need to be critically assessed with respect to
their ability to predict the aerodynamic behaviour of the real cross section.

Table 6.15: Summary of flutter limit predictions (Ucr, unit: [m/s]) from different model
combinations for Structure A / Structure H, (values in parentheses are for CFD flat
plate) (cf. Table 5.1).

``````````````̀Structural
Aerodynamic

Analytical Numerical

Analytical

Model#1 2D 94 / 26
-

Model#2 2D 92 / 34

Model#3
2D 94 / 26 94 (89) / 11

3D 98 / - 98 (92) / -

Numerical

Model#4
2D 96 / - 99 (92) / -

3D 98 / - 101 (94) / -

Model#5
2D

-
95 (98) / 15

3D 95 (-) / -
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Chapter 7

Sensitivity of Flutter Limit to Different
Parameters

7.1 Introduction

This chapter discusses the influence of different input parameters on the flutter stability
prediction. For this purpose, the variation in structural parameters and aerodynamic
behaviour of the cross section is focused here. The aerodynamic behaviour is studied
by changing the geometry of the cross section. These sections are modelled in the CFD
flow solver to determine their aerodynamic derivatives. Response surface methods have
been utilised to describe the aerodynamic derivatives to limit the number of simulations.
Additionally, effects of turbulence in the flow on the flutter stability have been discussed.
An approach has been presented to estimate flutter limit of a bridge deck section
by making use of already available aerodynamic derivatives of similar cross sections
employing response surface techniques.

7.2 Structural Parameters

The effects of change in the dynamic parameters of a bridge deck model on the
aerodynamic derivatives are negligible in the wind tunnel experiments [248]. However,
the uncertainty in the structural parameters can affect the flutter limit significantly
especially torsional frequency and mass moment of inertia of the deck [127]. It is also
important to consider the torsion-to-vertical bending frequency ratio. Bartoli et al. [249]
studied the change in classical flutter onset by inverting this ratio. Moreover Zhang
and Sun [250] presented the effect of cable sag, side span length, depth, dead load and
supporting system on the flutter stability of a suspension bridge.

The structural damping ratio of up to 2% is generally used in the design; however,
smaller damping ratios were observed from the outcome of vibration tests on suspension
bridges [251]. The presence of structural damping results in a small increase in the
flutter limit but the variability in it does not significantly affect the flutter limit [127,
252]. Jain et al. [253] observed that installing appropriate external dampers increases
the flutter stability of a long-span bridge and can be a viable option to overcome the
problems of low flutter speeds.

Long-span bridges under erection can be vulnerable to the aerodynamic instabilities
than in the service state as the stiffening girder lacks torsional continuity [254]. Jones
et al. [255] studied the effect of mode coupling on flutter during a retrofit and found
that flutter can happen on a relatively short-span structure due to the peculiar modal
profiles that are created as part of the retrofit procedure.

Here, the effects of structural parameters are studied first on the flutter limit prediction.
Non-dimensionalisation is convenient to represent input-output behaviour. However, it
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is important to note that the non-dimensionalisation sometimes could be misleading.
To elaborate this, an example is presented in Figure 7.1. The non-dimensional
parameters from Eq. (6.1) have been used with the structural properties of Structure A
(cf. Table 6.7). The flutter limits are computed using Model#1 which has been already
discussed in Section 6.5.1.

It is clear from the figure that the same non-dimensional parameter can have multiple
outcomes. This could be misleading when studying the sensitivity of parameters while
relying only on the value of the non-dimensional parameter by changing a single
dimensional parameter. The non-dimensional parameter µ is the ratio of the mass of
the deck to the mass of the air moved by the deck, rα is the non-dimensional radius
of gyration of the deck and γω is the still air frequency ratio between pitch and heave
[38]. For example, in Figure 7.1a the value of µ can be calculated by selecting different
combinations of B and m which leads to two different flutter limits as shown.

The effects structural parameters explained above are discussed here for Structure A and
Structure H using different models. Here only one parameter has been varied for each
non-dimensional case. Only B is varied in µ, I in rα and fα in γω, whereas ξ here is the
damping ratio for heave and pitch modes. Analytical flat plate aerodynamic derivatives
have been used for Model#1 whereas CFD aerodynamic derivatives (cf. Figure 6.16)
are utilised for Model#3. Flutter limits were then computed for the variation in these
parameters. Figure 7.2 shows the change in a non-dimensional parameter by changing
only a single variable. It can be seen in this figure that the variation in the flutter limit
prediction is not the same for all sets of structural and aerodynamic properties even in
the case of a single non-dimensional parameter. This only provides a qualitative way of
observing the effects of these parameters. Nevertheless, these plots help to understand
the general trend of the predicted flutter limit due to change in the input parameters.
However, it is expected from this that the quantification of uncertainties would also be
different in each model case. This is further discussed in the next chapter in detail.

7.3 Aerodynamic Behaviour

The shape of the deck section greatly influences the flutter stability of long-span
bridges. Increasing the aspect ratio (B/D) of the section, generally, improves the flutter
behaviour [256]. Matsumoto et al. [161] studied the role of various aspect ratios of a
rectangular section on aerodynamic derivatives and flutter stability behaviour. Different
configurations of fairings [257, 258, 259], fairing angle [260], vertical plates [259], slot in
the middle [172, 173, 257, 258, 261], double slot and the location of porous cavity or
grating and its opening ratios [259, 262] have been studied and proposed to improve
the flutter behaviour of the deck section. Some typical deck shapes for long-span
cable-supported bridges have been already shown in Figure 3.7.

Aerodynamic derivatives provide a useful way of understanding the complex aerodynamic
behaviour of bridge sections. This feature has already been highlighted in Section 4.3.2.1.
An example of aerodynamic derivatives determined for three types of bridge decks is
shown in Figure 7.3. As explained in Chapter 4, the aerodynamic derivative H∗1 is
related to the vertical SDOF instability and the aerodynamic derivative A∗2 governs the
rotational SDOF instability. For these two aerodynamic derivatives, the system will be
stable as long as they remain negative (considering no structural damping). This figure
elaborates that the shape of the cross section plays a vital role in the aeroelastic stability.
Deep sections are more susceptible to SDOF vertical instability and the aerodynamic
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Figure 7.1: Effect of structural input parameters on flutter limit of Structure A from
Model#1, (cf. Eq. (6.1)).
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derivative H∗1 for the rectangular section becomes positive which implies that after this
reduced speed vr the section will be unstable. However, for other two sections, H∗1
remain negative.
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Figure 7.3: Typical characteristics of aerodynamic derivatives for different cross section
geometries:
(top) section geometries,
(bottom) aerodynamic derivatives,
( ) flat plate,
( ) streamlined section,
( ) deep rectangular section,
( ) H-shaped.

H-shaped sections are more prone to the SDOF torsional instability where A∗2 becomes
positive whereas, the streamlined and rectangular sections show stable behaviour.
However, rectangular sections can also experience SDOF torsional instability at some
aspect ratio. The streamlined section in the presented example appears to have the
most stable behaviour as it does not have any problem of SDOF instability (H∗1 and
A∗2 remains negative). Often classical flutter is dominant for such sections and 2DOF
coupled flutter analysis is performed.

7.3.1 Numerical Parameters

Numerical uncertainty is also a major factor in the CFD simulations. The study of
the sensitivity of numerical parameters on the results is also important. The aim of
this research is not to cover the numerical uncertainly; however, this section highlights
its significance. The aerodynamic derivatives are computed trough forced vibration
simulations for which certain parameters are important such as amplitude of oscillation
(ho, αo), period of oscillation (To), time step (∆t), section discretisation (Npanel: number
of panels) and length of simulation time (t, t∗). The balance between these parameters
is not only necessary to achieve a certain quality but also important for required
computational time. In case the discretisation is finer, it would improve the quality
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but requires longer computation time which could be in some case upto more than
30 days and additionally, it requires more memory.

An example is presented using Structure A (cf. Section 6.2) to elaborate the importance
of numerical parameters on the least-square fit to calculate aerodynamic derivatives. The
section was modelled to perform CFD simulations as explained earlier in Section 6.4.
For this purpose, only one value of reduced speed (vr=10) was selected to show this
effect. However, it is important to note that for any other reduce speeds, this effect
could be quantitatively different. First, the effect of selecting different time step ∆t on
the prediction of aerodynamic derivatives was studied. The numerical parameters used
in these simulations are summarised in Table 7.1. The time step ∆t was changed for
each simulation from 0.01 to 0.10 s whereas all other parameters were kept constant.
These simulations generate lift force and moment time histories on which least-squares
fit is performed to calculate aerodynamic derivatives as explained in Section 4.4.2. The
results of these simulations are shown in Figure 7.4. It can be seen that as the time
step reduces the values of aerodynamic derivatives changes but do not stabilise at a
certain level. The time step of 0.01 s was the lowest value which was used in this
example but at the same time, it was the most expensive in terms of computation time
which took over 30 days to complete on a computer system with specifications provided
in Appendix C.1. The simulation with a time step of 0.02 s took around 2 weeks to
finish, therefore this time step was chosen to perform further simulations on the other
sections.

Table 7.1: Forced vibration simulations on Structure A: effect of numerical parameters
on aerodynamic derivatives (cf. Figure 7.4).

Common parameters

Npanel 340 vr 10

Lpanel [m] 0.2 To [s] 33

∆t∗ 1.0 U∞ [m/s] 10

ν [m2/s] 0.000015 ho [m] 1.65

Re 22× 106 αo [◦] 5

Effect of time step

Nstep 4,300-34,000 t∗ 103-130

Nparticle 100,000-700,000 ∆t [s] 0.01-0.1

Effect of length of time history

Nstep 2,000-20,000 t∗ 12-120

Nparticle 450,000 ∆t [s] 0.02

The effect of number of time steps Nsteps or the length of time history t, t∗ was also
studied. For this purpose, the same section was used in the simulation as before with
the numerical parameters shown in Table 7.1. The results of these simulations are
presented in Figure 7.4 where it can be seen that the aerodynamic derivatives start to
show stable behaviour after 18,000 steps; however, this also required over 20 days of
simulation runtime. The aerodynamic derivative H∗4 shows unstable behaviour in both
cases. The prediction of H∗4 is always uncertain and usually it is considered insignificant
in flutter analysis.

131



7.3. Aerodynamic Behaviour

0.00 0.02 0.04 0.06 0.08 0.10
−2

0

2

4

∆t [s]

H
∗ i
,
A

∗ i

0.00 0.02 0.04 0.06 0.08 0.10
−4

0

4

8

∆t [s]

H
∗ i
,
A

∗ i

0 30 60 90 120
−6

−3

0

3

t∗

H
∗ i
,
A

∗ i

0 30 60 90 120
−15

−10

−5

0

5

10

t∗

H
∗ i
,
A

∗ i

Figure 7.4: Aerodynamic derivatives from forced vibration simulations on Structure A:
(top) effect of time step ∆t on aerodynamic derivatives,
(bottom) effect of length of time history t∗ on aerodynamic derivatives.
(left) 4 H∗1 , 5 H∗4 , � A∗1, ◦ A∗4,
(right) 4 H∗2 , 5 H∗3 , � A∗2, ◦ A∗3, (cf. Table 7.1).
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7.3.2 Section Classification

A useful way to describe the aerodynamic behaviour of motion-induced aerodynamic
forces on the section is through the aerodynamic derivatives, cf. Section 4.3.2.1. The
aerodynamic behaviour significantly depends on the shape of the section which is
essential for the design and analysis of long-span bridges. At the initial design stage, it is
often not possible to perform wind tunnel tests or even CFD simulations. An approach
is proposed here to use the existing aerodynamic derivatives from WTT and numerical
simulations for conventional classes of deck sections. The most common classification of
deck sections is presented and the geometrical features of sections are highlighted. An
attempt was made by [196] towards the generalisation of the aerodynamic derivatives
for different types of cross sections.

The classification shown in Figure 7.5 has been considered here. Type I is the class of
streamlined sections which are more common for medium to large-span suspension and
cable-stayed bridges. This is a modern class of sections which have better aerodynamic
performance. Lillebælt [33], Great Belt [84, 118], Millau Viaduct [238] Höga Kusten
[230] and Sutong [136, 263] are some examples of this class of sections. Type II class
is the sections common for medium-span bridges. Tacoma Narrows [139, 239], Nanpu
Bridge [230] and Turin [264] fall under this category. This type has been used in the
earliest long-span bridges. These sections have some construction advantages; however,
the aerodynamic behaviour is inferior to that of Type I where sometimes the SDOF
torsional instabilities have been a great challenged as experienced in case of Tacoma
Narrows collapse in 1940. The third type i.e. Type III is the trapezoidal sections with
cantilevers on edges. These sections are also common for medium-span cable-stayed
bridges. The composite construction of such sections is a major advantage. However, the
aerodynamic performance can be relatively inferior to Type I. Queensferry Crossing and
Mersey Gateway are the cable-stayed bridges under construction which have this type
of sections. Type IV is the class of sections which are relatively new and common for
very large spans. The aerodynamic behaviour against aeroelastic instabilities is improved
by introducing slots for pressure release. The proposed Messina Suspension Bridge and
Stonecutters Cable-stayed Bridge are the examples of this type of sections. An extensive
range of data about the aforementioned bridges is provided in Tables A.1, A.2, A.3, A.4
and A.5.

It is important to mention here that this classification has certain limitations and does
not cover all aspects related to the aerodynamic behaviour. Several other parameters are
important which can significantly change the typical performance of the section. These
factors may include the following:

� as aspect ratio B/D decreases, the streamlined section can start to show SDOF
torsional instability. Additionally, deep sections may also show SDOF galloping
behaviour.

� Length of cantilever for a trapezoidal section

� Slopes of leading and trailing edges

� Degree of concavity for bi-girder section is very much related to SDOF torsional
instability

� Non-structural attachments e.g. railings, barriers and wind shields may also change
the aerodynamic behaviour.
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The aim here is not to define a strict classification of sections but to provide a general
framework to use data for a similar type of sections without performing WTT or CFD
simulations for aeroelastic assessment of bridges. Some studies have been also made
here to highlight the limitations of generalisation of aerodynamic derivatives in the next
section. To the best of author’s knowledge, this is the first work that shows the study
of such a wide range of section geometry variation.

(a) Type I: steamlined sections (b) Type II: bi-girder/multi-girder sections

(c) Type III: trapezoidal with cantilevers (d) Type IV: sections with slots
Figure 7.5: Cross section classification for generalisation of aerodynamic derivatives.

7.3.3 Sensitivity to Deck Shape

Some examples have been presented here by the change in section geometry and its effect
on the flutter limit. The forced vibration simulations were performed to determine the
aerodynamic derivatives and then these aerodynamic derivatives were used to compute
SDOF and 2DOF flutter limits. For this purpose, the section geometry is changed and
simulations are performed for each section with reduced speed vr from 2 to 16. This
requires a large number of simulations, whereas each simulation would take around 10
to 15 days to complete. Therefore response surface technique was used here to describe
each aerodynamic derivative in the space of geometry parameter and reduced speed. The
generated response surface representations of aerodynamic derivatives were then used to
compute flutter limits. In the following section, the application of this approach is
presented. The main steps are explained as follows:

� Set-up section with a parameter which defines the variation in the section geometry.
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� Select suitable numerical parameters and create input files for numerical simulations
(cf. Section 7.3.1).

� Carry out simulations and post process the results by performing least-squares fit
to determine aerodynamic derivatives (cf. Section 4.4.2).

� Normalise domain of each aerodynamic derivative to perform response surface
ensuring a certain quality (cf. Section 2.4).

� Compute SDOF and 2DOF instability limits using response surfaces of these
aerodynamic derivatives (cf. Sections 5.6.4 and 5.6.5).

7.3.3.1 Sensitivity to Aspect Ratio

The first study is made on a thin rectangular plate by changing its aspect ratio D/B.
The aspect ratio is changed from 0.01 to 0.45 and forced vibrations simulations are
performed to determine aerodynamic derivatives. A total of 17 sections were thus created
with different aspect ratios. Reduced speed was selected from 2 to 16 with an interval of
2. Each of section geometry at a given reduced speed requires two simulations separately:
one in heave and the other in pitch DOF. This whole set-up requires 2×8×17=272
simulations. Other numerical parameters are summarised in Table 7.2. These simulations
were run on a 64 core computer system and took around 25 days to finish.

Figure 7.6 shows the cross section geometry variation used for these simulations.
Aerodynamic derivatives were first determined after post processing the force and
moment time histories. Figure 7.7 shows the aerodynamic derivative H∗1 and A∗2 where
it can be seen that at some aspect ratio, the values of derivative becomes positive. A
2DOF coupled flutter analysis was performed and flutter limits were computed by using
these aerodynamic derivatives and structural properties of Structure A. The resulting
flutter limits are shown in Figure 7.8. Additionally, SDOF torsional flutter limits were
also computed.

B B

D

D

Figure 7.6: Forced vibration simulations on rectangular section with changing aspect
ratio D/B from 0.01 to 0.45.

For an effective utilisation of these aerodynamic derivatives, repose surfaces were
generated. These response surfaces were created for each aerodynamic derivative
individually. Two types of response surfaces were tested and applied on these
aerodynamic derivatives i.e. the polynomial functions and the moving least-squares
(cf. Section 2.4). For this purpose, the domain of the aerodynamic derivatives was
normalised and discretised in 50 segments each in the reduced speed and aspect ratio
space.

First, the polynomial regression was applied with different degrees of polynomial
function. The sufficient quality of fitting is important to be achieved through this

135



7.3. Aerodynamic Behaviour

Table 7.2: Forced vibration simulations on rectangular section with changing aspect
ratio: numerical parameters (cf. Figure 7.6).

Nstep 10,000 vr 2-16

Npanel 336-482 t∗ 60

Lpanel [m] 0.2 To [s] 6.6-52.8

∆t∗ 1.0 U∞ [m/s] 10

∆t [s] 0.02 ho [m] 0.5

ν [m2/s] 0.000015 αo [◦] 5

Nparticle 80,000-120,000 Re 22× 106

process. Table 7.3 describes the results of the Coefficient of Determination (CoD)
to asses how good is the fitted function. This shows that the CoD for aerodynamic
derivatives H∗1 , H∗4 , A∗1 and A∗4 is less than 0.50 even for polynomial of degree 5. This
implies that the data contains such a scatter which can not be captured with even a
higher degree of the fitted function. Figure D.1 shows the results of fitted aerodynamic
derivatives by polynomial functions.

The second approach of response surface was used by the moving least-squares. The
same procedure was repeated for this approach as before. In this case, the influence
radius D̃ was decreased to achieve a better fit. The value of D̃=0.05 shows the CoD
greater than 0.50 for all aerodynamic derivatives as depicted in Table 7.3. By reducing
the vale of D̃ further would lead to a perfect fit where the CoD of almost 1.0 could
be achieved. This would be similar to interpolation. This model of response surface is
superior over the polynomial fitting as it provides better quality fitting; however, requires
more computational time for fitting. The fitted response surfaces for the aerodynamic
derivatives are shown in Figure 7.7.

Table 7.3: Response surface fitting for aerodynamic derivatives of rectangular section
with changing aspect ratio (cf. Figures 7.6, D.1 and 7.7).

CoD, R2 [-] Time

H∗1 H∗2 H∗3 H∗4 A∗1 A∗2 A∗3 A∗4 [s]

Polynomial functions

1◦ 0.04 0.47 0.85 0.02 0.16 0.07 0.50 0.03 0.5

2◦ 0.05 0.68 0.96 0.23 0.33 0.18 0.90 0.07 0.3

3◦ 0.12 0.81 0.97 0.38 0.35 0.33 0.92 0.19 0.3

4◦ 0.26 0.84 0.97 0.43 0.40 0.43 0.95 0.28 0.3

5◦ 0.37 0.86 0.98 0.48 0.48 0.54 0.96 0.33 0.4

Moving least-squares

D̃=0.20 0.20 0.72 0.96 0.41 0.38 0.38 0.94 0.28 17.9

D̃=0.10 0.42 0.84 0.98 0.51 0.52 0.52 0.97 0.44 16.8

D̃=0.05 0.66 0.89 0.99 0.64 0.73 0.66 0.98 0.57 17.0

D̃=0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 17.5

The flutter limits are calculated from the generated response surfaces by moving
least-squares and are plotted on the Figure 7.8. Such a change in the geometry will
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Figure 7.7: Response surface fitting for aerodynamic derivatives of rectangular section
with changing aspect ratio: fitted surface by moving least-squares with D̃=0.05 and
(•) actual aerodynamic derivatives.
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have no effect on the analytical flat plate prediction because this analytical model does
not capture the shape of the section and rather assumes cross section as an airfoil or
a flat plate. It can be seen in the figure that at the ratios smaller than D/B=0.134,
the SDOF flutter limit increases more than twice as compared to the prediction for the
coupled 2DOF flutter by the analytical model (Model#1 in Section 5.4). At very low
aspect ratios (D/B close to zero), the flutter limit from 2DOF model (cf. Section 5.6.5)
becomes very close to Theodorsen flat plate prediction and as the aspect ratio increases
this flutter limit decreases. This shows that flutter limit computed for bluff bodies by
Theodorsen theory could be unreliable. Additionally, at such a low range of aspect
ratios, the section is no more prone to the SDOF torsional instability and only 2DOF
flutter remains. Another important point to note is that the SDOF flutter limit is higher
than the 2DOF flutter limit which implies that considering the mode coupling is critical
for aeroelastic instability analysis.
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Figure 7.8: Sensitivity of flutter limit to section geometry using properties of Structure A
for a rectangular section with increasing aspect ratio (D/B=0.01 - 0.45):
( ) analytical flat plate prediction for 2DOF system,
(◦) 2DOF flutter analysis using aerodynamic derivatives,
(�) SDOF flutter limits from aerodynamic derivative A∗2,
( ) 2DOF flutter analysis using response surface on aerodynamic derivatives,
( ) SDOF flutter limits from response surface on aerodynamic derivative A∗2
(CoD for 2DOF flutter analysis=0.992) (CoD for SDOF flutter limits=0.999).

Figure 7.9 illustrates the relative error between the flutter limits computed from actual
aerodynamic derivatives and from the response surface on the aerodynamic derivatives
given as

Relative error =
(Ucr,act. − Ucr,RS)

Ucr,act.
(7.1)

where Ucr,act. is the flutter limit from actual aerodynamic derivatives and Ucr,RS is the
flutter limit from response surface on aerodynamic derivatives. Th figure shows that the
relative error remains less than 3 % in all cases.

7.3.3.2 Sensitivity to Geometry

A series of simulations were performed to study the behaviour of the cross section under
a specific and gradual change of geometry. For the purpose of brevity here only the
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Figure 7.9: Sensitivity of flutter limit to section geometry using properties of Structure A
for a rectangular section with increasing aspect ratio (D/B=0.01 - 0.45): relative error
for flutter limits from direct method and from response surface on the aerodynamic
derivatives (cf. Eq. (7.1))
(◦) 2DOF flutter analysis using response surface on aerodynamic derivatives,
(�) SDOF flutter limits from response surface on aerodynamic derivative A∗2.

geometrical change and its effect on SDOF torsional flutter and coupled 2DOF flutter
has been studied by using models explained in Section 5.6.

The common procedure to study the effect of change in geometry is summarised as
follows:

� Starting section geometry is selected

� Change in the section geometry is parametrised by selecting some variables

� Forced vibration simulations are preformed in the flow solver

� Aerodynamic derivatives are computed

� SDOF and 2DOF flutter limits are determined using the aerodynamic derivatives.

It is important to mention here that for the following studies of the sensitivity of flutter
limit to section geometry, response surfaces were not generated for the aerodynamic
derivatives and flutter limits were computed directly from the aerodynamic derivatives.
However, the same procedure is applicable to these cases as explained in Section 7.3.3.1.
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7.3.3.2.1 Fairing Slope and Streamlined Section Depth

A rectangular section with aspect ratio of D/B=2.85/33 has been considered. The effect
of the slope of the leading edge and the trailing edge is studied for b∗/B from 0 to 0.18
as shown in Figure 7.10a. Figure 7.11a illustrates that the coupled flutter limit increases
with the increase in b∗/B. There exist no SDOF flutter problem for this section.

The effect of aspect ratio of the streamlines section is also studied. The increase in the
aspect ration D∗/B from 0.01 to 0.30 is shown in Figure 7.10b. Figure 7.11b shows some
decrease in the coupled flutter limit, whereas the problem of SDOF flutter instability
appears at an aspect ratio of 0.18.
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D

b∗

d
(a) Rectangular section with increasing fairing slope (b∗/B = 0 − 0.18, D = 2.85m,
d = D/2)
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D
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D
∗

(b) Streamlined section with increasing depth (D∗/B = 0.01− 0.3, b = 3.2m, B = 33m)
Figure 7.10: Sensitivity of flutter limit to section geometry: section variation
(cf. Figures D.3 and D.4).
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Figure 7.11: Sensitivity of flutter limit to section geometry using properties of
Structure A:
(left) rectangular section with increasing fairing slope (b∗/B = 0− 0.18),
(right) streamlined section with increasing depth (D∗/B = 0.01− 0.3),
( ) analytical flat plate prediction for 2DOF system,
(◦) 2DOF flutter analysis using aerodynamic derivatives,
(�) no SDOF flutter limit found.
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7.3.3.2.2 Central Slot

The effect of the central slot was studied on the flat plate and Structure A. The slot was
introduced in the middle of section and was gradually increased as shown in Figure 7.12
with b∗/B from 0 to 0.15. These sections are not prone to SDOF torsional flutter;
however, behaviour against coupled flutter could be improved by these slots. Figure 7.13
show that there is an increase in the flutter limit up to 35 % due to a central slot.
The increase in the slot width however does not improve flutter limit.

Since both the sections are streamlined, the increase in flutter limit of both outcomes
is similar. A more bluff section could have a different effect on the flutter limit
quantitatively.

B B

D

D b∗

(a) Plate with increasing central slot (b∗/B = 0− 0.15, B/D = 100)

B B

DD

b∗

(b) Structure A with increasing central slot (b∗/B = 0− 0.15, B/D = 11.6)
Figure 7.12: Sensitivity of flutter limit to section geometry: section variation
(cf. Figures D.5 and D.6).
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Figure 7.13: Sensitivity of flutter limit to section geometry using properties of
Structure A:
(left) flat plate with central slot (b∗/B = 0− 0.15),
(right) Structure A with central slot (b∗/B = 0− 0.15),
( ) analytical flat plate prediction for 2DOF system,
(◦) 2DOF flutter analysis using aerodynamic derivatives,
(�) SDOF flutter limit.
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7.3.3.2.3 Straight Fairings and Circular Fairings

A rectangular section of aspect ratio D/B = 0.24 has been studied which is prone to
SDOF flutter. In order to improve its behaviour against torsional instability, rectangular
and circular fairings have been introduced as shown in Figure 7.14. The results from
flutter analyses shown in Figure 7.15 implies that the circular fairings appear to be more
effective against torsional flutter instability. Whereas there is a slight improvement in
the case of coupled flutter. It is important to note that for a circular case the point of
flow separation is not fixed, whereas in the case of straight fairing it is at the corner.
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(a) Straight fairings (b = d = 0−D/2)
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(b) Curved fairings (r = 0−D/2)
Figure 7.14: Sensitivity of flutter limit to section geometry: section variation (D/B =
0.24) (cf. Figures D.7 and D.8).
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Figure 7.15: Sensitivity of flutter limit to section geometry using properties of
Structure A:
(left) rectangular section with straight fairing (b = d = 0−D/2),
(right) rectangular section with curved fairing (r = 0−D/2),
( ) analytical flat plate prediction for 2DOF system,
(◦) 2DOF flutter analysis using aerodynamic derivatives,
(�) SDOF flutter limit.
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7.3.3.2.4 H-shape to Rectangular and Plate to H-shape

H-shape section is studied by increasing its depth to transform it into a rectangular
section as shown in Figure 7.16a. The flutter limits show that with an increase in
d∗/D, slightly increase the coupled flutter behaviour. However, the SDOF torsional
flutter limit is increased much more. The flutter predictions are very far from the
analytical flat plate prediction which shows that Theodorsen prediction can not be used
for such a bluff section.

A thin plate is changed to H-shape by increasing depth at the two end girders as
displayed in Figure 7.16b. The coupled, as well as SDOF torsional flutter, start to
appear on after the other at certain d∗/D ratio. The difference with the analytical
prediction gets more at a higher d∗/D ratio.
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(a) H-section with increasing depth (d∗/D = 0.04− 1.00, D = 2.4m, B = 12m)
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d
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(b) Plate with increasing edges (d∗/D = 0.13− 1.25, D = 2.4m, B = 12m)
Figure 7.16: Sensitivity of flutter limit to section geometry: section variation
(cf. Figures D.9 and D.10).
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Figure 7.17: Sensitivity of flutter limit to section geometry using properties of
Structure H:
(left) H-section with increasing depth (d∗/D = 0.04− 1.00),
(right) plate with increasing edges (d∗/D = 0.13− 1.25),
( ) analytical flat plate prediction for 2DOF system,
(◦) 2DOF flutter analysis using aerodynamic derivatives,
(�) SDOF flutter limit.
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7.3.3.2.5 Bottom plate and Fairing on H-shape

The H-shape section was also an attempted to stabilise by using plates at the bottom
of the section to close the lower concave region as shown in Figure 7.18a. The resulting
flutter limits in Figure 7.19a does not show much improvement against SDOF torsional
flutter and the 2DOF coupled flutter.

In the other study, fairings were introduced on the leading and trailing edges of H-section
as shown in Figure 7.18b. It appears in Figure 7.19b that due to these fairings the flutter
limits even decrease for some fairing angles and then slightly raised. This shows that
the fairings are also not an effective solution against flutter for such type of sections.
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(a) H-shape with bottom plate (b∗/B = 0− 0.15, B/D = 5)
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(b) H-shape with fairing (b∗/B = 0− 0.25, B/D = 5)
Figure 7.18: Sensitivity of flutter limit to section geometry: section variation
(cf. Figures D.11 and D.12).
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Figure 7.19: Sensitivity of flutter limit to section geometry using properties of
Structure H:
(left) H-section with bottom plate (b∗/B = 0− 0.4),
(right) plate with fairing (b∗/B = 0− 0.25),
( ) analytical flat plate prediction for 2DOF system,
(◦) 2DOF flutter analysis using aerodynamic derivatives,
(�) SDOF flutter limit.
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7.3.3.2.6 Forcing Amplitude for Streamlined and Flat plate

The motion-induced aerodynamic forces are considered linear in terms of their response.
Often aerodynamic derivatives are computed at fixed values of amplitudes of motion
with the assumption that the amplitudes are kept small. The effect of amplitudes of
the forcing motion has been studied here with different heave and pitch amplitudes
selected to perform forced vibration simulations and computing aerodynamic derivatives.
For heave case amplitudes of forcing for vertical motion ho/B=0.010, 0.013, 0.015, 0.020,
0.030 have been considered and for pitch case amplitude of forcing for rotational motion
αo=1.5◦, 2.86◦, 4◦, 6◦, 8◦ were used.
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Figure 7.20: Aerodynamic derivative A∗2 from the forced vibration simulations with
different forcing amplitude (αo=1.5◦, 2.86◦, 4◦, 6◦, 8◦) for
(left) Structure A,
(right) flat plate (aspect ratio 1:100) (cf. Figures D.13 and D.14).
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Figure 7.21: Sensitivity of flutter limit to forcing amplitude using properties of
Structure A (ho/B=0.010, 0.013, 0.015, 0.020, 0.030) (αo=1.5◦, 2.86◦, 4◦, 6◦, 8◦):
(left) Structure A cross section,
(right) flat plate (aspect ratio 1:100),
( ) analytical flat plate prediction for 2DOF system,
(◦) 2DOF flutter analysis using aerodynamic derivatives,
(�) SDOF flutter limit.

These forcing amplitudes were used for Structure A and the flat plate of aspect
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ratio B/D = 100 to perform forced vibration simulations. The resulting flutter limits
computed from the aerodynamic derivatives are shown in Figure 7.21. The figure shows
that there is not a significant change in the coupled flutter limit for both sections with
different amplitudes of forcing motion.

The aerodynamic derivative A∗2 is also shown for these sections in Figure 7.20 where
it can be seen that at αo=8◦, the derivative A∗2 becomes positive at some vr. The
reason of this could be numerical uncertainty originating for the length of time step
which was kept same for all cases, whereas for large amplitudes, the smaller time step
is required to resolve the flow properly. It should also be noted that the assumption
of linear relationship between the amplitudes and motion-induced forces holds for small
amplitudes. At larger amplitudes, nonlinear aerodynamic behaviour starts to appear.

7.3.4 Flutter Limit for Circular Section

Fully-analytical model presented in Section 5.4 assumes any cross section as flat
plate and therefore does not take shape of the section into account. However, the
cross-sectional shape is essential in the determination of flutter limit for a section
as explained in the previous section. To elaborate this, an example of a circular
cross section is presented here. A circular cross-section is considered and forced
vibration simulations are performed. The resulting aerodynamic derivatives are shown
in Figure D.2.

This is an academic example for which same structural properties are assumed as that
of Structure A. By using Model#1 (cf. Section Section 5.4) the flutter limit has been
computed for this section. This provides a flutter limit prediction of 93.4 m/s. When
the same circular cross-section is used in Model#3 (cf. Section 5.6.5) by using the
aerodynamic derivatives presented in Figure D.2, this model does not provide any flutter
limit.

This is well-known that circular cross sections are not prone to flutter problem. However,
using a model which is limited in its ability to consider such a cross-sectional shape may
lead to incorrect outcomes. This shows Model#1 is not robust for such applications
where cross section geometry is not similar to flat plate.

7.3.5 Aerodynamic Derivative Fusion

An approach is presented here to merge the aerodynamic derivatives for a cross section
which could be obtained from the same as well as different sources. This enables
the design engineer to obtain a set of aerodynamic derivatives for a section without
performing WTT or CFD simulations which can be used for initial assessment in
the early design stage. Three approaches are presented to merge these aerodynamic
derivatives: direct weighted average, polynomial regression and moving least-squares.
Weighting factors can also be introduced for these aerodynamic derivatives based on
the importance or confidence of the results from a particular source. The choice of
weights is important and may introduce some bias; however, without any knowledge, all
weights may be assumed equal. The advantage of this approach is that the aerodynamic
derivatives are achieved for a cross section from different sources and there is no need to
run the same number of analyses as that of the number of sources and then to average
the results. From the obtained aerodynamic derivatives, the flutter analysis is required
to be performed once and these aerodynamic derivatives can be used for other purposes
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such as sensitivity and uncertainty analyses which are discussed in the next chapter. To
elaborate this, examples are presented for the case of a flat plate and a box girder.

7.3.5.1 Application to Flat Plate

The aerodynamic derivatives have been taken for a flat plate by Theodorsen
theory (cf. Section 4.3.1), experimental [265] and numerical computed form CFD
(cf. Section 4.4.2). These aerodynamic derivatives are shown in Figure 7.22. Weighting
factors are also introduced for these aerodynamic derivatives which can be set higher or
lower based on the importance or confidence of the results from a particular source. For
this purpose, weighting factors of 0.30 was used for analytical, 0.30 for the CFD and
0.40 for experimental aerodynamic derivatives. A simplified approach has been used here
to introduce a weighting factor by simply repeating the aerodynamic derivatives relative
to others. That means for a weighting factor of 0.30, the aerodynamic derivatives are
repeated 30 times in the data set and for a weighting factor of 0.40, they are repeated
40 times. This allows to use the response surface codes without any modification. Some
details of the response surface methods are already provided in Section 2.4.

The resulting fitted aerodynamic derivatives are presented in Figure 7.22 where it can
be seen that the results from these three approaches are not much different from each
other for this example. One reason is that the aerodynamic derivatives from the selected
sources appear to be relatively similar; however, it is just a qualitative and does not
explain how this affects the flutter limit prediction.

The actual aerodynamic derivatives were used to calculate flutter limit by using
structural parameters of Structure A (cf. Section 6.2). These results were then directly
averaged by using weighting factors. The fitted aerodynamic derivatives were also used
to compute flutter limits. Table 7.4 provides the summary of these results. It is quite
clear from the results that there is a relatively large difference between the flutter
limits computed from the individual set of aerodynamic derivatives from a single source,
whereas the aerodynamic derivatives merged by the explained approach provide very
close values for the flutter limits.

Table 7.4: Aerodynamic derivative fusion: flutter limits computed for Structure A
using Model#3 directly from aerodynamic derivatives and from merged aerodynamic
derivatives.

Model Ucr Ucr/Bfh ωcr vrcr
[m/s] [-] [rad/s] [-]

Analytical 93.2 18.10 2.071 8.59

CFD (cf. Section 6.5.3) 83.3 16.18 2.086 7.62

WTT [265] 114.4 22.21 2.151 10.12

direct average on individual
values

98.7 19.17 2.107 8.9

Weighted average 97.8 19.00 2.124 8.8

Polynomial 4◦ 99.4 19.30 2.122 8.9

MLS (D̃=0.05) 97.7 18.98 2.121 8.8

The main idea was to present the approach and to show how it can be utilised to
merge aerodynamic derivatives from different sources to conduct the flutter analysis.
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Figure 7.22: Aerodynamic derivatives (H∗i and A∗i where i = 1, . . . , 4):
(◦) flat plate by Theodorsen theory,
(�) experimental [265],
(4) forced vibration simulations on a flat plate (aspect ratio 100),
(· · · ) weighted average,
( ) Polynomial,
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This approach could be useful for cases where the aerodynamic derivatives of the cross
section considered are not available. In such a situation, the aerodynamic derivatives of
similar sections can be used for preliminary assessment.

7.3.5.2 Application to Bluff Section

The same approach is also presented for a semi-streamlined section. For this purpose
Great Belt Suspension Bridge deck has been selected. This section is one of the
most studied cross sections and there exist extensive data in the literature about the
aerodynamic behaviour. A bare cross section without any attachments is presented
in Figure 7.23. For further details about the bridge, the reader is referred to the
publications presented in Tables A.1, A.2, A.3, A.4 and A.5.
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Figure 7.23: Simplified Great Belt Suspension Bridge deck sections (units: [m]).

The aerodynamic derivatives for this section were searched in the literature and some
of the selected aerodynamic derivatives are plotted in Figure 7.24. The figure shows
that there exist some differences in the aerodynamic derivatives since the methods of
determination of the aerodynamic derivatives are quite different.

It is worth mentioning that these aerodynamic derivatives were mostly digitised from
scanned literature and therefore may include some uncertainties. Additionally, some of
the sets of aerodynamic derivatives did not include H∗4 and A∗4. For these cases (WTT
[141], RANS [266]), H∗4 and A∗4 were not considered.

The structural properties of the Great Belt section (cf. Table 7.5) were used and
flutter analysis was performed for each set of aerodynamic derivatives using the method
explained in Section 5.6.5. The computed flutter limit directly using the aerodynamic
derivatives is summarised in Table 7.6 which show a large scatter in the values.

The aerodynamic derivatives are then merged by the scheme presented before. The
weighted average, polynomial functions and moving least-squares fit was applied to the
derivatives and from the resultant curves of aerodynamic derivative flutter limits are
computed. These results are also summarised at the end of Table 7.6. A relatively close
agreement is seen in the resulting values by these three approaches. For comparison,
the direct average of flutter limit computed from the individual sets of aerodynamic
derivatives is also calculated which is 71.8 m/s. This is also close to the MLS prediction.
However, the main advantage of merging these aerodynamic derivatives is the availability
of curves which can be used for further analyses.
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Figure 7.24: Aerodynamic derivatives (H∗i and A∗i where i = 1, .., 4): Great Belt section
(◦) WTT [84],
(�) FLUENT [84],
(4) FEM [84],
(5) RVM [84],
(/) DVM [118],
(.) DVMFLOW [141],
(×) WTT [141],
(�) Water tunnel [239],
(+) RANS [266],
(FF) VPM (this study),
(· · · ) weighted average,
( ) Polynomial,
( ) MLS.

Table 7.5: Basic data and structural properties of the Great Belt bridge section [141].

B m I fh fα ξh ξα

[m] [kg/m] [kgm2/m] [Hz] [Hz] [-] [-]

31 22700 2470000 0.099 0.272 0.01 0.01
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Table 7.6: Aerodynamic derivative fusion: flutter limits computed from structural
properties (cf. Table 7.5) and the merged aerodynamic derivatives (cf. Figure 7.24) of
Great Belt section using Model#3.

Model Ucr Ucr/Bfh ωcr vrcr
[m/s] [-] [rad/s] [-]

WTT [84] 87.1 28.37 1.238 14.33

FLUENT [84] 72.8 23.73 1.246 11.88

FEM [84] 76.9 25.07 1.278 12.22

RVM [84] 68.8 22.40 1.377 10.16

DVM [118] 64.4 20.98 1.294 10.11

DVMFLOW [141] 72.2 23.52 1.378 10.67

WTT [141] 55.7 18.15 1.438 7.89

Water tunnel [239] 75.0 24.44 1.222 12.52

RANS [266] 67.5 22.00 1.261 10.92

VPM (this study) 77.6 25.29 1.164 13.58

direct average on individual values 71.8 23.40 1.289 11.43

Weighted average 68.5 22.32 1.291 10.75

Polynomial 4◦ 65.1 21.21 1.263 10.51

MLS (D̃=0.10) 68.8 22.43 1.277 10.95

7.4 Atmospheric Turbulence

The effects of turbulence on the aerodynamic forces have been studied for very limited
cases so far [91]. Atmospheric turbulence is generally considered beneficial and found
to raise the flutter limit. Therefore, it is usually ignored in the measurement of
aerodynamic derivatives and flutter stability analysis [4, 5]. In other words, inflow
turbulence tends to enhance the aerodynamic stability of long-span bridges. The main
effect of the increase in the atmospheric turbulence on a bridge is not to change
considerably its drag, lift, moment and aerodynamic derivatives but to excite several
modes of vibration and such response will determine to what extent the bridge is prone
to flutter instability.

Introducing turbulence in the wind often delays the flutter [100, 267] and stabilises the
bridge deck response [268, 269] whereas sometimes flutter limit is found to increase
monotonically with increasing turbulence intensity [256]. However, Frandsen [241]
concluded that flutter limit for sharp edged bridge decks does not appear sensitive to
turbulence in the flow. Parkinson [270] observed that in the case of large turbulence in
wind flow causes a soft galloping section to becomes weaker and moving towards stability
and a hard galloping section to becomes soft. Flutter occurs suddenly in a uniform flow
but with atmospheric turbulence, it takes a smooth course; however, turbulent flow has
a negative effect on the flutter stability of long-span bridges with streamlined section,
therefore, it is important to consider this effect in the calculation of motion-induced
force [271]. Cai and Albrecht [272] observed that wind turbulence may significantly
reduces the flutter velocity. This has also been observed by the author [273] where the
flutter limit seems to have decreased for a streamline section of a suspension bridge in
a turbulent flow.
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7.4.1 Fundamentals of Turbulence

Turbulence is one of the important parts of the boundary layer studies and must be
quantified in order to study its effect on the structural behaviour exposed to wind action.
The turbulence in the wind could be atmospheric or due to a structure on the upstream
side. It creates an apparent random variations about the mean. The recorded wind time
histories appear to be irregular; however, mean wind speed is often quite visible. The
longitudinal U , transverse V and vertical W components of the time dependent wind
velocity vector at a given location can be expressed as a sum of a constant term and a
time dependent function with zero mean as:

U (x, y, z, t) = Ū (x, y, z) + u (x, y, z, t) , (7.2)

V (x, y, z, t) = v (x, y, z, t) , (7.3)

W (x, y, z, t) = w (x, y, z, t) , (7.4)

where u, v and w are the turbulent velocity fluctuations in longitudinal, transverse
and vertical directions, respectively. A dimensionless parameter that is often used as a
measure of the turbulence is turbulence intensity I, also often referred to as turbulence
level. Turbulent intensity is the ratio of the standard deviation or the root-mean-square
of the turbulent velocity fluctuations, at a given location over a specified period of time,
to the mean wind speed written as follows:

Iu =
σu
Ū
, (7.5)

Iv =
σv
Ū
, (7.6)

Iw =
σw
Ū
, (7.7)

where Iu, Iv and Iw are the turbulence intensities in longitudinal, lateral and vertical
directions, respectively. σu, σv and σw are the root-mean-square or the standard
deviation of the turbulent velocity fluctuations of the longitudinal, lateral and vertical
components of the wind, respectively. Figure 7.25 shows turbulent intensities along
height according to Eurocode [274] under ordinary conditions for different terrains.

7.4.2 Simulation Setup for Turbulent Flow Generation

Turbulence can be introduced in the wind tunnel by some disturbance upstream of the
test region or by introducing surface roughness on the floor of the wind tunnel. This
turbulence is carried by the flow and fills the entire tunnel cross-section. An analogous
approach to the upstream disturbance to create turbulent flow in the wind tunnel
was considered in this study for the numerical simulations. A number of rectangular
cross-sections in the flow were placed on the upstream side of the main section to
generate turbulence in the incident uniform flow. Vorticity shed from these cross sections
evolved into a turbulent flow and was carried with the flow to the main section. The
simulations were performed in the same numerical flow solver as explained in the earlier
chapters. The arrangement and dimensions of the blocks in the simulation domain is
shown in Figure 7.26.

Several simulations were performed with different block arrangements and the resulting
flow properties were analysed so that the required turbulent flow is achieved. The
uniform wind moving from the left of the blocks passes through the blocks and becomes
unsteady or turbulent due to the vortex shedding from the blocks. This turbulence is
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Figure 7.25: Turbulent intensity as a function of height and terrain category according
to Eurocode [274]:
(– –) Category I,
( ) Category II,
( ) Category III,
( ) Category IV,
( ) Category V.
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Figure 7.26: Turbulent flow in numerical simulations:
(left) domain of numerical simulation with section and upstream block setup,
(right) arrangement, size, spacing and location of blocks (cf. Table 7.7).
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carried with the flow to the downstream side. The location of the bridge section was
decided at a sufficient distance from the blocks such that the turbulent flow properties
become almost stable. This distance depends on the size of blocks and range of wind
speeds to be used. For simplicity, this distance was kept 3d (150 m) for all setups
where the size of the domain is 6d×6d (300 m). Two block sizes were used so that the
vortices shed from blocks with different frequencies cover wider part of the frequency
spectrum of the flow. Four different setups were made with different block size and
spacing for the bridge section as presented in Table 7.7.

Table 7.7: Turbulent flow in numerical simulations: block size and spacing for different
setups and the corresponding flow parameters at the location of bridge section in the
numerical simulations (cf. Figure 7.26).

Setup a b c Ū/U∞ Iu Iw

[m] [m] [m] [-] [-] [-]

1 0.60 1.80 1.80 0.72 0.320 0.342

2 0.30 1.80 1.80 0.88 0.126 0.130

3 0.45 1.35 1.80 0.73 0.260 0.270

4 0.45 2.70 1.80 0.89 0.176 0.172

7.4.3 Measurements of Turbulent Flow Properties

Simulations were run first with only blocks without placing the bridge section to analyse
and quantify turbulent flow characteristics. One of the main effects of blocks on the flow
regime is the reduction of wind speed due to blockage. The amount of blockage is related
to the spacing between the blocks. Increasing the spacing leads to smaller blockage and
vice versa. As a result, roughly 10-30 % blockage was observed depending on the block
spacing from 1-10 times the block depth. Therefore, it is important to consider this
reduction and quantify it for correct determination of turbulent flow parameters. The
results for Setup 2 shown in Figure 7.27 and 7.28 are for free stream wind speed U∞
of 100 m/s in the longitudinal direction. The point where turbulent flow properties
stabilise was decided as the location of the section (i.e. 0 m in Figures 7.27 and 7.28)
with respect to the location of blocks (i.e. -150 m). The resulting mean wind speed Ū
at the intended location of the bridge section measures to be 88 m/s. The mean wind
speed and turbulent intensity at the location of section measured for different setups are
presented in Table 7.7.

It was observed that the turbulence level is directly related to the size of the blocks.
Decreasing the size will decrease the turbulence intensity but increases computational
effort due to increase in number of blocks. From Figure 7.28, it can be seen that the
turbulence intensity Iw at the location of the section is 0.13 whereas in Figure 7.25 the
turbulence intensity ranges roughly varies from 0.10 to 0.43. The results for the mean
wind speeds and the turbulence intensities for four different setups used in this study
are shown in Table 7.7.

In Figures 7.27 and 7.28, selected part from the simulation domain is shown. These
figures show that fluctuations in the flow properties are more near and around the
location of the blocks and as the flow moves away from the blocks, fluctuations decrease
and stabilise. Figure 7.29 shows the frequency spectra of the fluctuating component of
the flow in vertical direction compared with von Karman spectrum. There is a distinct
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Figure 7.27: Turbulent flow in numerical simulations:
(left) ratio of longitudinal time averaged wind to free stream wind speed ū/U∞,
(right) ratio of vertical time averaged wind to free stream wind speed w̄/U∞,
(top) values over the area,
(bottom) values along the centreline,
( ) block location,
( ) intended section location.

difference between the dominant frequencies for different setups which shows that the
size and spacing of blocks have a considerable effect on the frequency characteristics
of the flow. The values match relatively better for Setup 3 and 4 for high-frequency
range; however, discrepancies are seen in low-frequency ranges. This could be due to
insufficient length of simulation time.

7.4.4 Flutter Simulations on Bridge Section

The section of the bridge was supported on springs and was allowed to move under the
influence of flow in 2DOF corresponding to its first bending and first torsional mode
of vibrations. The simulations were performed at different wind speeds, the resulting
amplitudes were recorded along with the other parameters and the flutter limit was
determined. The same section of the bridge was modelled along with four block setups.
The generated turbulence from the blocks on the upstream of section travelled to the
section and it received the modified flow regime. The response of the section was
recorded for different wind speeds and the flutter limit was determined. Figure 7.30
demonstrates the bridge section in a uniform flow and the vortex stream from the
section on the downstream side of the section. It also shows qualitatively the interaction
of eddies in the incident turbulent flow with the vortex shedding process over the body
surface.
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Figure 7.28: Turbulent flow in numerical simulations:
(left) turbulence intensity in longitudinal direction Iu,
(right) turbulence intensity in vertical direction Iw,
(top) values over the area,
(bottom) values along the centreline,
( ) block location,
( ) intended section location.

10
−1

10
0

10
1

0.0

0.2

0.4

10
−1

10
0

10
1

0.0

0.2

0.4

S
(w

)
S
(w

)

f [Hz]f [Hz]

Setup 1 Setup 2

Setup 3 Setup 4

Figure 7.29: Turbulent flow in numerical simulations: spectra of fluctuating component
of flow in vertical direction at the location of bridge section for different block setups,
( ) simulated (cf. Table 7.8),
( ) von Karman.

7.4.5 Results of Turbulent Flow Simulations

The 2D numerical simulations were performed on Structure A (cf. Section 6.2). The
simulations were run for a uniform flow first and the flutter limit was found to be
101 m/s. The same section was then used for different turbulent flow conditions. The
simulations were run at various wind speeds and the flutter limits were determined. The
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Figure 7.30: Instantaneous view of particle stream:
(top) bridge section in a uniform flow,
(bottom) bridge section in a turbulent flow.

summary of resulting flutter limits is presented in Table 7.8 and the maximum response
amplitudes are shown in Figure 7.31. Figure 7.31 shows that low turbulent intensities
have no considerable effect on the flutter limit; however, for larger turbulent intensities
the effect is a significant reduction in the flutter limit. This implies that for the terrain
categories, with smaller surface roughness, will have less effect on the flutter limit and
uniform flow conditions can be considered. However, for rough terrains, considering only
uniform flow could give unsafe results. It can be visualised in Figure 7.31 that in a
uniform flow, in general, the maximum dynamic amplitudes hmax for the section increases
with the increase in wind speed. In a turbulent flow, the amplitudes are generally higher
and before reaching the critical limit, the phenomenon of buffeting can be observed but
the flutter limits are different. It is observed that the increase in amplitudes due to
turbulence depends on the amount of turbulence and frequency characteristics of the
flow.

Table 7.8: Effect of turbulence on the flutter limit of Structure A from 2D numerical
simulations: critical flutter limits in uniform flow and in different turbulent flow
conditions (cf. Figure 7.31).

Uniform flow Setup 1 Setup 2 Setup 3 Setup 4

Ucr [m/s] 101.0 95.6 100.6 92.0 100.6

Ucr/Bfh [-] 19.6 18.6 19.5 17.9 19.5

Iu [-] - 0.320 0.126 0.260 0.176

Iw [-] - 0.342 0.130 0.270 0.172
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Figure 7.31: Effect of turbulence on the flutter limit of Structure A from 2D numerical
simulations: maximum dynamic response amplitudes of bridge section with increasing
wind speed in different flow conditions,
( ) uniform flow,
(◦) Iw=0.342,
(�) Iw=0.130,
(4) Iw=0.270,
(5) Iw=0.172 (cf. Table 7.8).

7.5 Results of Flutter Analyses

This section summarises the results of the flutter analyses from Chapter 6 and
Chapter 7. The model combinations presented in Chapter 5 have been used to predict
the flutter limits of the selected reference objects (cf. Section 6.2). The computed flutter
limits are summarised in Table 7.10. Table 7.9 provides the model combinations and
the parameters related to these model combinations.

A 2DOF system was analysed through analytical, empirical and numerical approaches.
The first bending and the first torsional modes were selected for the coupled flutter
analyses. Further, it was assumed that both the modes are exactly similar or in other
words, the value of the MSSF is 1.0. Such simplifications are valid for the structures
which have decoupled and distinct modes. Structural coupling of modes can have a
significant effect on the onset of flutter for very long span bridges such as Akashi Kaikyo
Bridge. However, for the selected reference object, this effect was insignificant due to
relatively small span. Moreover, the frequency ratio between the torsional mode and the
bending mode is another factor of major importance. A larger value of the frequency
ratio increases the onset speed of flutter. The contribution of higher modes was also
studied through the multimode flutter analysis. For the presented example (Structure A),
the predicted flutter limit was unaffected by including more modes into the analysis.
Two structures have been selected as the reference objects with distinct structural and
aerodynamic properties. The predictions of simplified models are much higher than
the complex model predictions in case of Structure H which could lead to an unsafe
situation.
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Table 7.9: Model comparison with the assumptions and considered parameters,
(×) aspects covered in this study (cf. Table 7.10),
(•) not covered here.

Criterion/parameter Model

#1 #2 #3 #4 #5

a..g a..f a b c a b c a b c

Modal properties × × × × × × × × × × ×
Structural damping × × × × × × × × × ×
Mode shape × × × × ×
Multi-mode × × ×
Cross section shape × × × × × × × × ×
Body generated turbulence × × ×
Variable cross section • • •
Atmospheric wind conditions

- mean wind profile • • • • • •
- turbulence characteristics • • • × •
- correlation • • •
Other excitation phenomenon

- Buffeting • • • • •
- VIV • • •
Suitable for design stage • • • •

Model#1 Fully Analytical: Theodorsen equations for motion-induced aerodynamic
forces with 2D structural model

(a..g: different Theodorsen circulation functions) (cf. Section 5.4)

Model#2 Empirical Approach: for 2D only

(a..f: Selberg, Rocard, etc.) (cf. Section 5.5)

Model#3 Derivative-based Eigenvalue Analysis: Theodorsen flat aerodynamic
derivatives and Scanlan derivatives from CFD forced vibration simulations
with 2D and 3D structural model

(a: 2D, b: with mode shape, c: multimode) (cf. Section 5.6.5)

Model#4 Derivative-based FSI Simulations: Theodorsen flat aerodynamic derivatives
and Scanlan derivatives from the CFD forced vibration simulations with
2D and 3D structural model

(a: 2D, b: 2 modes, c: multimode) (cf. Section 5.6.6)

Model#5 Fully-coupled CFD Simulations: based on the VPM with 2D and quasi-3D
structural model

(a: 2D laminar flow, b: 2D turbulent flow, c: quasi-3D laminar flow)
(cf. Section 5.7)
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Fully-analytical models are useful to gain insight of the force coupling. However, these
models cannot be used for bluff sections due to their inability to take into account
the shape of the section. This has been discussed in detail in Section 6.5.1. The
cross-sectional shape plays an essential role in the aeroelastic behaviour of a long-span
bridge and sometimes it is a decisive factor in the design of the bridge under wind action.
The empirical formulas are the simplest to immediately calculate the flutter limit for a
bridge section; however, their application is limited to only provide a rough estimate.
The CFD simulations based on the VPM are convenient to model the aerodynamic
behaviour of the cross section in the absence of the wind tunnel data. However, there
is a large uncertainty associated with these simulations resulting from the choice of
numerical parameters. This can be also due to under-resolved flow field at low Reynolds
number and the quality of diffusion model used. The process of Vortex shedding and flow
separation greatly depend on the Reynolds number. Nevertheless, numerical simulations
provide a viable solution to study the complex aeroelastic phenomenon of flutter.

Table 7.10: Results of flutter limits (Ucr [m/s]) computed from different model
combinations with assumptions made for Structure A and Structure H.
(cf. Tables 6.15 and 7.9).

Structure A Structure H

Lillebælt
section

Flat plate
(B/D=100)

Model#1

a 93.8 26.2

b 95.1 26.4

c 94.0 26.0

d 93.0 25.8

e 91.8 25.3

f 93.8 26.2

g 93.6 26.0

Model#2

a 92.0 33.9

b 90.0, 90.3, 90.6, 92.0, 90.6 24.0, 24.1, 24.1, 24.5, 24.1,

c 90.6 24.1

d 93.0 24.8

e 108.4 29.5

f 102.5 34.2

Model#3

a 94.1 89.0 11.1

b 96.0 - -

c 98.0 92.0 -

Model#4

a 99.0 92.0 -

b 101.0 94.0 -

c 101.0 94.0 -

Model#5

a 95.0 98.0 15.0

b 92.0 - -

c 95.0 - -
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In general, all modes were able to predict the flutter limit for the presented examples;
however, there exist a large scatter among the model predictions as illustrated in
Figure 7.32. It has been shown in Section 7.3.4 that the simplified models (Model#1
and Model#2) fail to predict the realistic situation in special circumstances. Such as,
in the case of a circular section there exists no flutter instability. The simplified models
predict flutter onset, whereas a superior model (Model#3) predicts the phenomenon
correctly and does not give any instability limit even if the simulation is performed at
a very high wind speed. The predictability of the phenomenon is a major advantage
of the complex model over the simplified models which sometimes lack this important
feature.
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Figure 7.32: Results of flutter limit predictions from different model combinations with
assumptions made for:
(left) Structure A,
(right) Structure H,
◦ a, � b, 4 c, 5 d, × e, + f ∗ g (cf. Tables 7.9 and 7.10).

7.6 Summary

The influence of different input parameters on the flutter stability prediction has been
discussed in this chapter. The structural parameters and the aerodynamic behaviour
of the cross section are studied in detail. The non-dimensionalisation is common to
use; however, the effects of changing only one or few parameters in the non-dimensional
parameter on the output have been highlighted which could be sometimes misleading.

The aerodynamic behaviour is also studied with the sensitivity to the geometry of the
cross section. A wide range of studies on the section geometry has been presented. A
common categorisation of sections has been described and the features affecting the
aerodynamic behaviour are highlighted. It was also pointed out that this type of
categorisation of cross sections has some limitations in covering certain features which
could change the aerodynamic behaviour significantly.

An approach is presented to use the existing aerodynamic derivatives for a cross section
from different sources to merge and use the aerodynamic derivatives for the estimation
of flutter stability limit. For this purpose, response surface methods were used. It is
also possible to use different weighting factors for data obtained from different sources.

Furthermore, the effects of turbulence in the flow on the flutter stability has been
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studied. An approach has been presented to generate turbulence in the flow solver which
is based on a laminar inflow. The approach similar to that of the wind tunnel testing
was employed by placing small rectangular sections on the upstream of the main section
to generate turbulent flow. The results were favourable with reasonable quality; however,
this approach has a limitation of being computationally expensive. Another approach
could be to introduce a particle ladder which can release particles with a certain vorticity
at each time step. This approach could reduce the computation time and serve as a
more robust solution to achieve a certain quality of turbulent flow properties.
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Chapter 8

Probabilistic Assessment of Coupled
Models

8.1 Introduction

Flutter analysis is commonly performed through deterministic approach by using fixed
values of the input parameters. However, the final flutter limit is significantly influenced
by a small change in one or few input parameters. Thus calculations performed
considering the stochastic input parameters results in a probabilistic flutter analysis,
where the flutter limit is described as a stochastic variable which is a function of
parameter variation. Probabilistic flutter analysis also helps to quantify the probability
distribution and confidence intervals of the model prediction. Therefore, it is important
to consider such variation in the input parameters and to perform the flutter analysis
using a probabilistic approach.

The main objective here is to develop a framework to perform flutter stability analysis
using probabilistic input parameters. In this chapter, deterministic and probabilistic
sensitivity analyses have been used to identify the essential input parameters and their
effect on the model response is quantified. A novel approach to consider aerodynamic
uncertainties for bridge deck sections is presented. Input parameter uncertainties and
model uncertainties are quantified for the selected models (i.e. Model#1 and Model#3)
presented in Chapter 5. Finally, the ranking of models is done based on their total
uncertainty.

8.2 Probabilistic Approach to Flutter Analysis

The probabilistic assessment of aeroelastic stability of flutter is important for design
considerations of cable-supported long-span bridges [32]. The critical design wind speed
is determined such that the probability of failure due to flutter is less than or equal to
a specified target safety level for a given return period. Ianenti and Zasso [275] applied
a probabilistic approach to identify the flutter instability for the case of a suspension
bridge. Some studies have been conducted on the probabilistic assessment of flutter limit
prediction from wind tunnel testing [276] and CFD applications [277]. The probabilistic
assessment also consists of sensitivity analysis, uncertainty analysis, reliability analysis
and design optimization. However, this study focuses only sensitivity and uncertainty
analyses.

The sensitivity analysis can provide very important information about the dependence
of the key chosen design variables on the flutter limit of a bridge. The objective of
sensitivity analysis is to identify which parameters affect the response. Jurado and
Hernández [157], Nieto et al. [278] carried out an analytical sensitivity analysis of the
flutter phenomenon in long-span bridges. Sarkar et al. [279, 280], Caracoglia et al.
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[281] studied the sensitivities related to extracting experimental aerodynamic derivatives
between different laboratory environments. Abbas and Morgenthal [127, 282] studied
sensitivity and uncertainty of structural parameters and aerodynamic derivatives on
flutter limit.

Commonly the flutter analysis is performed considering complete deterministic structural
parameters which is known as deterministic analysis. However, there are uncertainties
in these design variables which include, geometric properties, material properties, load
magnitude and distribution [283] as well as aerodynamic derivatives [284, 285, 286, 287].
This makes it necessary to consider these uncertainties in the analysis for complete
information. Jakobsen and Tanaka [288] discussed uncertainties in the prediction of
aeroelastic flutter response of cable-supported bridges. Ito and Fujino [289] discussed
the effect of spatial and temporal fluctuations of wind flows on the torsional flutter
of suspension bridges by using numerical analysis through Monte Carlo Simulation
(MCS). Argentini et al. [290] also used MCS to considered the effects of structural
and aerodynamic uncertainties. Structural mass and stiffness parameters are shown to
have a significant effect upon the flutter limit especially torsional frequency and mass
moment of inertia [127].

There have been several studies conducted on the flutter stability analysis considering
parametric uncertainties [15, 283] as well as model-form and predictive uncertainty [20,
22, 23, 24] in the aeronautical industry by using Monte Carlo simulation and utilizing
the advantages of the Response Surface Method (RSM). It is worth mentioning that to
the best of author’s knowledge, there have been no study to this time which provides
a complete framework to consider input structural parameter uncertainty, aerodynamic
uncertainty as well as model framework uncertainty in the flutter analysis of bridges.
This study is an attempt to covering these aspects.

8.2.1 Parameters and Assumptions for Sensitivity and
Uncertainty Analyses

The uncertainties can be generally classified into epistemic and aleatory uncertainties.
There are different sources of uncertainties in the flutter stability analysis and these can
be broadly categorised into four main types as shown in Figure 8.1. The uncertainties
of structural input parameters and aerodynamic derivatives are included by modelling
them as probabilistic input variables. The uncertainty for each parameter is assumed to
be represented by a normal distribution and it is further assumed that the uncertainty
of structural input parameters and aerodynamic derivatives are independent. All other
input parameters are assumed to be deterministic.

In general, the structural dynamics of the bridge is governed by the structural input
parameters such as mass, frequency and damping ratio. The predicted flutter limit
of the bridge strongly depends on the fundamental natural frequencies of the bridge,
especially the torsional frequency. The flutter limit also depends on the final magnitude
of the aerodynamic derivatives. For this purpose, analytical aerodynamic derivatives
for flat plate and aerodynamic derivatives from CFD forced vibration simulations for
the reference sections have been used. Sensitivity and uncertainty analyses have been
performed. The flutter limits for the reference objects (cf. Section 6.2) were computed on
the basis of models described in Section 5.4 and 5.6.5. The importance of each structural
parameter and the aerodynamic derivative has been quantified by the sensitivity analysis.
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Flow Modelling Aerodynamic Modelling

Structural Modelling

Fluid-structure Coupling Model

• Reynolds Number
(turbulent or laminar flow)

• Atmospheric turbulence: intensity,
spectra, spacial correlations

• Approximation of self-excited
forces as linearly dependent of
structural motion

• Important details reproduced
• 2D vs. quasi-3D
(Multi-slice approach)

• Solid, shell, beam elements
• Linear system

• Dimensional reduction from
3D to 2D

• Number of modes considered
• Prior knowledge of mode coupling
• Modal or Rayleigh damping
• Model calibration accuracy
(natural frequencies)

• Scaling of the bridge model

• Aerodynamic derivatives from
free, forced or Buffeting response

• Method of extracting aerodynamic

derivatives
• Length of measured time history
• Accuracy of least-squares fit
• Accuracy of measurement

methods

Figure 8.1: Sources of uncertainty in flutter analysis.

8.2.2 Variation in Parameters and Application of Response
Surface

The MCS is the traditional and the most commonly used method for a probabilistic
analysis. Usually, the MCS require a great number of simulations to be performed
for a different set of input parameters which increases the computation time. For this
purpose, the RSM can be used to decrease the number of simulations and to make
this process more efficient. The RSM represents the structural response by using a
simple approximation function. To perform a numerical simulation may take from some
minutes to a few days whereas running this function require only fraction of a second.
The computation time can be greatly reduced without modifying the existing numerical
code for the simulation. These RSMs have been used for the probabilistic torsional
flutter [291, 292, 293] and coupled flutter [294] analyses considering structural parameter
uncertainties.

Here, response surface analysis has been utilized to make the method of computing the
flutter limit more efficient. Figure 8.2 shows the process of using the response surface
method to compute the flutter limit and using it for further analyses. A polynomial
regression model, as well as the MLS, were tested as response surfaces.

The variation in the structural input parameters and the aerodynamic derivatives
has been treated separately. The input parameter space is discretized to generate
combinations of sample sets according to DoE scheme presented in Section 2.3. The
variation in the structural input parameters is considered first to show the application
of response surface approach and its effectiveness. Table 8.1 presents the time
required to compute flutter limits with the actual model and with the response surface
method (cf. Section 2.4). It is evident that there is a significant improvement in the
computational time. It is also important to consider the quality of meta-model used to
accurately describe the model behaviour. The CoD shows the quality of the regression
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Figure 8.2: Procedure to use response surface methods to perform sensitivity and
uncertainty analyses in computing flutter limit considering variation in
(left) structural input parameters,
(right) aerodynamic derivatives.

model which is close to 1 in the table. This means that the simplified mathematical
model describes very well the behaviour of the complex model. Table 8.2 shows a good
agreement of flutter limits computed with those from the actual model.

Table 8.1: Comparison of time required for the flutter analysis by the actual model
and the response surface method (using variation of structural input parameters in
Structure A).

Model No. of samples Time [s] CoD, R2 [-]

Actual model Model#1 100 7 -

Actual model Model#3 100 102 -

RSM, Polynomial 4◦ Model#1 10,000 <1 0.98

RSM, Polynomial 4◦ Model#3 10,000 <1 0.98

The variation in the structural input parameters is straightforward as only mean,
standard deviation and distribution are required to generate samples for the variance
based approaches, whereas aerodynamic derivatives represent the motion-induced
behaviour of the cross section which is a function of reduced speed vr and has a physical
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Table 8.2: Comparison of flutter analyses performed by the response surface method
and the actual model (using variation of structural input parameters in Structure A).

Model Structure Actual model RSM, Polynomial 4◦

Ucr [m/s] Ucr/Bfh [-] Ucr [m/s] Ucr/Bfh [-]

Model#1 A 93.8 18.2 94.2 18.3

Model#1 H 13.5 8.6 13.8 8.8

Model#3 A 116.8 22.7 118.4 23.00

Model#3 H 8.5 5.4 8.4 5.4

meaning. If a random sample is generated for the aerodynamic derivatives, it may not
necessarily reflect physically possible behaviour.

The uncertainty evaluation of each aerodynamic derivative includes the sensitivity and
scatter of the respective aerodynamic derivative. The scatter of the aerodynamic
derivatives is small at lower vr and gets large as the vr increases. Therefore, linearly
increasing standard deviation may be considered for the aerodynamic derivative which
is a function of vr. A probabilistic approach to modelling the aerodynamic derivatives
for a flat plate is suggested by selecting the aerodynamic derivative curves added or
subtracted with the uncertainty following the normal distribution. The condition of
linearly increasing standard deviation of aerodynamic derivatives along vr needs also to
be satisfied.

The uncertainty in the aerodynamic derivatives can be quantified from the scatter or
deviation of analytical flat plate derivatives and by comparing it to the experimental
tests [264] or numerical forced vibration simulations on the thin rectangular plate.
Another approach could be to quantify uncertainty from the residual obtained by the
fitting function on the aerodynamic derivatives [35].

An approach has been suggested here to consider uncertainty in the aerodynamic
derivatives by varying section geometry. The aerodynamic derivatives were computed
from the CFD simulations at several reduced speeds with varying section geometry to
account for better scatter for statistical measures. Figure 8.3 and 8.4 shows the variation
of the deck shape and the effect on the aerodynamic derivative A∗2. The aerodynamic
Derivative A∗2 is the negative damping induced by torsional motion and is important
for SDOF torsional flutter. The wind speed at which A∗2 becomes positive corresponds
to SDOF critical limit (assuming no structural damping). Figure 8.4 indicates that
Structure A does not have any problem against torsional flutter whereas Structure H is
vulnerable in almost the whole range of d/D.

b/B = 0− 0.18

B

b d/D = 0.04− 1.00

d D

Figure 8.3: Section geometry variation considered for the CFD simulations to apply
response surface.

Response surfaces were generated for these aerodynamic derivatives computed from
the CDF simulations. For this purpose, both the polynomial functions and the MLS
approaches were used. Table 8.3 shows the CoD from these approaches. It is clear
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Figure 8.4: Aerodynamic derivative A∗2 from CFD simulations for
(left) Structure A and
(right) Structure H.
( ) SDOF torsional flutter limit (with ξα = 0) (cf. Figure 8.3).

from the results that the MLS shows much better behaviour whereas even a polynomial
of 5◦ is not sufficient to capture the behaviour of some aerodynamic derivatives where
the CoD of less than 0.50 is achieved. However, the MLS approach takes much longer
computational time. For comparison time requited for direct interpolation is also shown.

It is also important to see the quality of the response surface if it is applied on different
reduced speed ranges. Table 8.4 summarizes the CoD by a polynomial model fitted on
aerodynamic derivatives. It shows that for low reduced speeds, the quality of fit is
better as this range has less scatter and the fitting quality decreases for higher reduced
speed ranges which can be improved by adding more data points.

Table 8.3: Fitting quality measure (CoD [-]) and required time of response surface
generation on the aerodynamic derivatives of Structure A.

Derivative Interpolation Polynomial MLS

linear cubic 1◦ 2◦ 3◦ 4◦ 5◦ D̃=0.05 0.10 0.15

H∗1 1.00 1.00 0.00 0.05 0.13 0.26 0.37 0.98 0.97 0.97

H∗2 1.00 1.00 0.01 0.62 0.81 0.84 0.86 0.99 0.99 0.99

H∗3 1.00 1.00 0.09 0.90 0.97 0.98 0.98 1.00 1.00 1.00

H∗4 1.00 1.00 0.02 0.15 0.38 0.43 0.48 0.98 0.98 0.97

A∗1 1.00 1.00 0.10 0.23 0.36 0.41 0.48 0.98 0.98 0.98

A∗2 1.00 1.00 0.02 0.18 0.34 0.44 0.54 0.97 0.97 0.96

A∗3 1.00 1.00 0.50 0.51 0.93 0.95 0.97 1.00 1.00 1.00

A∗4 1.00 1.00 0.02 0.08 0.20 0.28 0.33 0.97 0.96 0.95

Time [s] 0.02 0.03 0.01 0.01 0.04 0.05 0.05 292 128 49

Aerodynamic derivatives were computed by the CFD simulations and response surfaces
were generated. Figure 8.5 shows different approaches to account for the uncertainty in
the aerodynamic derivatives. For a flat plate aerodynamic derivatives, the approach in
the middle was employed and for aerodynamic derivatives from the CFD forced vibration
simulations, the approach on the right was used.
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Table 8.4: Fitting quality measure (CoD [-]) of response surface on different reduced
speed vr ranges (using polynomial 5◦) (cf. Figure 8.4).

Derivative Structure A Structure H

vr=2-8 6-12 10-16 2-16 1-4 3-6 5-8 1-8

H∗1 0.94 0.55 0.36 0.78 0.97 0.95 0.93 0.96

H∗2 0.99 0.92 0.84 0.94 0.99 1.00 0.99 0.98

H∗3 1.00 0.99 0.99 0.99 0.96 0.99 0.99 0.98

H∗4 0.69 0.75 0.49 0.49 0.99 0.92 0.91 0.96

A∗1 0.94 0.56 0.72 0.84 0.95 0.77 0.75 0.77

A∗2 0.99 0.98 0.98 0.98 0.97 0.99 0.88 0.96

A∗3 1.00 1.00 1.00 1.00 0.98 0.96 0.96 0.83

A∗4 0.62 0.29 0.53 0.64 0.99 0.90 0.72 0.91

Then sampling was performed for eight aerodynamic derivatives for global sensitivity
and uncertainty analyses. Figure 8.6 provides different sampling techniques for the
aerodynamic derivatives. The approach in the middle was utilized for flat plate
aerodynamic derivatives whereas the approach on the right was used for aerodynamic
derivatives from the CFD forced vibration simulations.
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Figure 8.5: Approaches to consider uncertainty in the aerodynamic derivatives:
(left) average uncertainty over whole vr range,
(middle) linearly increasing uncertainty depending on vr,
(right) independent uncertainty at each vr.
( • ) mean values from the CFD simulations,
( ) upper and lower limits corresponding to 95.44% (±2σ) confidence interval.
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Figure 8.6: Approaches to generate sampled aerodynamic derivatives:
(left) random generation independent of vr
(middle) following a scaled mean
(right) interpolation between geometric change.
( • ) actual values from CFD simulations
( ) sampled aerodynamic derivatives.
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8.3 Sensitivity Analysis

The structural parameters of Structure A and Structure H used in the sensitivity analysis
are shown in Table 8.5. Local sensitivity analysis was performed first as explained in
Section 2.5.1.1. The variations in the input parameters were assumed to be independent
of each other. It is important to note that the non-dimensional parameters calculated
are only based on changing single parameter as discussed in Section 7.2. The results of
the analysis in Figure 8.7a show that the frequency ratio γω is the most important input
parameter affecting the flutter limit. Then the parameters µ and rα also have significant
effect whereas ξ has the least effect as compared to the other input parameters. The
structural damping ratio ξ may have a significant effect on the flutter limit [295].
However, with the presence of uncertainty in the other parameters it has been noted
that this effect is comparatively low.

On the same lines, a local sensitivity analysis was also performed for aerodynamic
derivatives to quantify their importance on the flutter limit. Figure 8.7b shows the
results of the analysis where it can be seen that H∗3 , A∗1, A∗2, A∗3 and to some extent
H∗1 are the most significant aerodynamic derivatives. H∗4 seems to have almost no effect
which confirms the outcome of other studies [35, 38, 264]. However, A∗4 has still some
visible effect.
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Figure 8.7: Sensitivity indices for flutter speed from local sensitivity analysis considering
variation in
(left) structural input parameters,
(right) aerodynamic derivatives. (cf. Section 2.5.1.1)
(4) Model#1 Structure A,
(5) Model#1 Structure H,
(◦) Model#3 Structure A,
(�) Model#3 Structure H.

Global sensitivity analysis was performed to overcome the problem of local effects as
discussed in Section 2.5.1.2. The LHS approach was used to generate samples for the
structural parameters with their distributions. The flutter limit was then computed
for each sample set. Figure 8.8 show the convergence with the increasing number of
samples. From the figure, it can be seen that 5,000 samples seem to have a sufficient
accuracy. The outliers were ignored from the sample as they do not describe a flutter
limit. Figure 8.9a shows the results of the global sensitivity analysis considering variation
in the structural parameters only. Qualitatively, it shows similar results as before in the
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case of local sensitivity analysis but with a slight difference that in this case rα has
much less effect than before. This method is superior to the local method as it covers
a wider range of the variation of the input parameters and considers the interaction
between them.

Similarly, the variation in the aerodynamic derivatives was considered and sampling
was done for eight aerodynamic derivatives. Figure 8.9b shows that the aerodynamic
derivatives H∗3 , A∗2 and A∗3 are the most influential whereas all others are relatively less
significant. In most cases, H∗2 appears to be insignificant.
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Figure 8.8: Convergence of CoV of flutter limit (CV (Ucr)) using response surface with
increasing number of samples (Model#1-Structure A, 20 simulations).
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Figure 8.9: Sensitivity indices for flutter speed from global sensitivity analysis considering
variation in
(left) structural input parameters,
(right) aerodynamic derivatives. (cf. Section 2.5.1.2)
(4) Model#1 Structure A,
(5) Model#1 Structure H,
(◦) Model#3 Structure A,
(�) Model#3 Structure H.

Various studies [35, 38, 264, 286] describe A∗1, A∗2, A∗3, H∗3 and to some extent H∗1 as the
important aerodynamic derivatives. Derivatives H∗4 and A∗4 represent the aerodynamic
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stiffness induced by the vertical displacement of the deck and are considered to have a
small influence on the flutter limit. This may be considered valid in the case of a flat
plate. However, the results of this study show that H∗4 or A∗4 can have a high influence
for specific bluff sections, and thus significantly contribute to the overall uncertainty
in the prediction of flutter limit. Here, A∗2 appears to be less significant in case of
Model#3 Structure A as this section does not experience SDOF flutter problem. For
Structure H, A∗2 is not the most influential aerodynamic derivative because the flutter
limit is computed for a coupled 2DOF system. It is important to mention that the
sensitivity analysis for aerodynamic derivatives depends on a number of factors such as
the cross section shape and the structural input parameters. Changing these parameters
can result in a different outcome.

The variance-based approach of sensitivity analysis has also been applied considering
correlated input parameters. The correlation was considered between structural
parameters B − I, I − fα and fα − ξ. These parameters were assumed correlated
with ρ(Xi, Xj) = 0.0 to 0.5. The results of sensitivity analysis performed considering
correlated parameters are shown in Figure 8.10. It is visible that with the increase in
the correlation between the structural parameters, the correlated sensitivity contribution
also increases. However, total sensitivity indices do not change significantly. It also
shows that the relative importance of µ and rα changes.

Since the aerodynamic derivatives are computed from the same CFD simulations with
two time series, it is evident that the aerodynamic derivatives can be correlated
and modelling of uncertainty should include the effect of dependence between the
aerodynamic derivatives. The covariance matrix describes the correlation between the
aerodynamic derivatives from heave time histories and from the pitch time histories.

The correlation depends on the geometry of the section as the aerodynamic derivatives
are functions of geometry. The range of reduced speed vr is also important for which
the correlations are being calculated. Therefore, the correlation of the aerodynamic
derivatives for a particular case is not necessarily applicable to the aerodynamic
derivatives of other cross sections. For this purpose, the following situations were studied:

(a) Synthetic or artificial correlation introduced between all aerodynamic derivatives as

(i) no correlation ρ(Xi, Xj)=0.00

(ii) full correlation ρ(Xi, Xj)=0.99

(iii) partial correlation ρ(Xi, Xj)=0.50

(b) Correlation for lift force aerodynamic derivatives H∗1 −H∗4 and H∗2 −H∗3
Correlation for moment aerodynamic derivatives A∗1 − A∗4 and A∗2 − A∗3

(c) Dependence of aerodynamic derivatives on each other

(i) since aerodynamic derivatives for flat plate are approximated as H∗1 = −K.H∗3
and A∗1 = −K.A∗3 [38, 155, 190]

(ii) it is also interesting to see the correlation between H∗1 −H∗2 , H∗3 −H∗4 , A∗1−A∗2
and A∗3 − A∗4.

The correlation matrices are presented in Appendix E.1. Since the model response due to
a variation in the aerodynamic derivatives is highly non-linear, the method proposed by
Xu and Gertner [16] for sensitivity analysis with correlated parameters is not applicable.
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Figure 8.10: Sensitivity indices for flutter speed from global sensitivity analysis
considering correlated structural input parameters:
(left) parameters µ, rα, γω and ξ respectively for a given correlation coefficient ρ,
(right) individual parameter with increasing correlation coefficient ρ from 0.1 to 0.5,
(�) uncorrelated contribution, (�) correlated contribution.
(top to bottom) Model#1 Structure A, Model#1 Structure H, Model#3 Structure A,
Model#3 Structure H.
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8.4 Parameter Uncertainty Analysis

The overall parametric uncertainty of the model depends on the uncertainty in the
input parameter and their relative sensitivity on the model output. The local
uncertainty analysis was first performed by considering uncertainty in the structural
input parameters. Table 8.5 shows the structural input parameters used for the
uncertainty analysis after [15].

Table 8.5: Mean values and distributions of probabilistic input parameters considered in
sensitivity and uncertainty analyses (cf. Table 6.7).

Parameters B µ I rα fα γω ξ

[m] [-] [kgm2/m] [-] [Hz] [-] [-]

Mean (Structure A) 33 17.1 1017778 0.283 0.50 3.21 0.01

Mean (Structure H) 12 47.2 177730 0.539 0.20 1.54 0.01

CV [-] 0.05 0.10 0.11 0.10

Distribution Normal Normal Normal Normal

Figure 8.11a shows the results of structural parameter uncertainty contribution from
local uncertainty analysis. The same procedure was adopted by considering uncertainties
in the aerodynamic derivatives. Figure 8.11b shows the uncertainty contribution by the
aerodynamic derivatives. Since same uncertainty in the aerodynamic derivatives has been
assumed, qualitatively it is not much different from the sensitivity analysis.
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Figure 8.11: Uncertainty contribution of parameters for flutter speed from local
uncertainty analysis considering variation in
(left) structural input parameters,
(right) aerodynamic derivatives. (cf. Section 2.5.2)
(4) Model#1 Structure A,
(5) Model#1 Structure H,
(◦) Model#3 Structure A,
(�) Model#3 Structure H.

Figure 8.12 presents the individual and overall effect of considering uncertainty in the
structural parameters and the aerodynamic derivatives. Structural parameters have much
more contribution in the overall uncertainty.
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Figure 8.12: Parameter uncertainty contribution for flutter speed from local uncertainty
analysis considering variation in
(4) structural input parameters only,
(5) aerodynamic derivatives only,
(◦) structural input parameters and aerodynamic derivatives.

The uncertainties introduced in the parameters considering only a few data points may
lead to inaccurate results. Therefore, a global uncertainty analysis was performed which
considers the uncertainty in the input parameters with their respective distributions.
The sampling was done with the LHS approach using 5,000 samples. Figure 8.13
shows the correlation coefficients between the input structural parameters and the
output considering uncorrelated parameters. The uncertainty analysis was also performed
considering the uncertainty in the aerodynamic derivatives. The quantification of
uncertainty in the aerodynamic derivatives greatly depends on the cross section shape.
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Figure 8.13: Extended correlation matrix for Structure A using Model#1 from
global uncertainty analysis for flutter speed considering uncorrelated structural input
parameters.

The larger confidence interval shows that there is more uncertainty in predicting
the flutter limit. It shows the accuracy of flutter prediction. Table 8.6 and
Figure 8.15 presents the results of uncertainty analysis considering structural parameters,
aerodynamic derivatives and both at a time. It is important to visualise how uncertainty
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Table 8.6: Global uncertainty analysis considering uncorrelated structural input
parameters and aerodynamic derivatives: mean µY and coefficient of variation CVY of
flutter limits (Y : Ucr [m/s]).

Structure A Structure H

Model#1 Model#3 Model#1 Model#3

µY
[m/s]

CVY
[-]

µY
[m/s]

CVY
[-]

µY
[m/s]

CVY
[-]

µY
[m/s]

CVY
[-]

Parameters 94.2 0.121 118.7 0.086 13.7 0.125 8.4 0.126

Derivatives 93.9 0.027 117.6 0.052 13.5 0.046 8.5 0.002

Both 94.2 0.124 115.3 0.108 13.8 0.135 8.4 0.125

is depicted in the final flutter limit from the structural parameters and the aerodynamic
derivatives. The distribution of the output also represents the characteristics of the
model. Normal distribution fits very well on the model output. Figure 8.14 summarises
the results of uncertainty analysis considering uncorrelated parameters. It can be seen
that the uncertainty in the model output is relatively larger when the uncertainty in the
structural parameters is considered and is less if only the uncertainty in aerodynamic
derivatives is considered. The overall uncertainty does not change significantly by
including uncertainty in the aerodynamic derivatives. However, the high scatter of
H∗4 and A∗4 shows that the large uncertainty in the computation of these aerodynamic
derivatives may lead to undesirable effect in the probabilistic flutter predictions. This
also shows that the uncertainty due to aerodynamic derivatives greatly depends on
the cross section type and not only on the individual contributions of aerodynamic
derivatives.
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Figure 8.14: Parameter uncertainty contribution for flutter speed from global uncertainty
analysis with uncorrelated parameters considering variation in
(4) structural input parameters only
(5) aerodynamic derivatives only
(◦) structural input parameters and aerodynamic derivatives.

Figure 8.16 shows the effect of correlation considered for the structural input parameters
and the aerodynamic derivatives. The correlation considered between the parameters
does not affect the uncertainty much. The correlation considered between the
aerodynamic derivatives, generally, reduces the scatter of the model output and in turn
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Figure 8.15: Parameter uncertainty contribution for flutter speed from global uncertainty
analysis considering uncorrelated
( ) structural input parameters only,
( ) aerodynamic derivatives only,
( ) structural input parameters and aerodynamic derivatives.
(top to bottom) Model#1 Structure A, Model#3 Structure A, Model#1 Structure H,
Model#3 Structure H.
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reduces the model uncertainty. Therefore, ignoring correlation will generally lead to
conservative solutions in case of a probabilistic flutter prediction. This is also desirable
because the actual correlation between the parameters is typically not well established.
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Figure 8.16: Parameter uncertainty contribution for flutter speed from global uncertainty
analysis considering correlation between
(left) structural input parameters
(right) aerodynamic derivatives.
(4) Model#1 Structure A,
(5) Model#3 Structure A,
(◦) Model#1 Structure H,
(�) Model#3 Structure H.

8.5 Model Uncertainty

Uncertainties related to the parameters are considered in the models; however, in many
cases, uncertainties introduced by the modelling process can have a significant influence
on the total uncertainty in the analysis. A methodology is presented here to quantify
both parametric and model-form uncertainties in the prediction of flutter instability. This
utilizes the Adjustment Factor Approach (AFA) and the Probabilistic Adjustment Factor
Approach (PAFA) to quantify model-form uncertainties and ultimately to compute total
uncertainties.

In the study of complex physical phenomena, a correct model may not exist which
provides true value. Instead, a model can be chosen as best model from the considered
set of models for the analysis of certain phenomena. The best model is selected assuming
this model represents the physical phenomena most accurately. The choice of the model
also introduces uncertainty on the assumptions made that the model represents best
a given scenario. The uncertainty related to the identification of the‘best model’ for
the prediction of model response is the model-form uncertainty. Therefore, complete
quantification of uncertainty suggests that it is crucial to consider the uncertainty related
to model selection. The model with the highest model probability is selected as ‘best
model’ and in this case, where all models have equal probability, any model can be
selected as ‘best model’. The effect of selecting other models can also be studied;
however, this was not done here. The AFA uses adjustment factors to update the
results of the best model to take into account the uncertainty related to the selection of
the best-model. Model probabilities are based on the expert opinion related to accuracy,
merits and usage of individual models.
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In this section, total uncertainty of the model originating form model input parameter
uncertainty and model framework uncertainty are computed. Total uncertainty can
serve as to rank and assess the considered models. The procedure to calculate total
uncertainty is described in Section 2.5.3 where it consists of three major parts to
compute. The model with the lowest uncertainty may be selected to compute model
response.

The statistical parameters of model response E(Yi) and V (Yi) are computed considering
random input parameters. Variance based global uncertainty analysis (cf. Section 8.4)
was performed first on the input parameters of Structure A and Structure H using
Model#1, Model#2 and Model#3 (cf. Chapter 5). The results of this analysis are
presented in Table 8.7 along with the considered model probabilities. For this analysis,
same model probabilities are assumed. The choice of model probabilities depends on
the efficiency of use and numerical stability. This choice introduces some bias in the
analysis but this bias can be reduced or kept to a minimum according to the experience
and knowledge about the model. Neglecting the bias of models could lead to a situation
where an inferior model may provide the best solution, therefore, it is recommended to
use only the variation of the model prediction as model selection indicator [21].

Table 8.7: Model parameters from deterministic and probabilistic analysis considering
stochastic input parameters (cf. Section 8.4).

Model P (Mi) Yi E(Yi) V (Yi) σ(Yi)

Ucr Ucr/Bfh Ucr Ucr/Bfh

[-] [m/s] [-] [m/s] [-] [m2/s2] [m/s]

Structure A

Model#1 0.33 93.8 18.22 94.2 18.31 136.6 11.69

Model#2 0.33 92.0 17.87 92.3 17.92 133.0 11.53

Model#3 0.34 116.8 22.69 115.3 22.40 154.8 12.44

Structure H

Model#1 0.33 13.5 8.65 13.8 8.83 3.44 1.86

Model#2 0.33 11.5 7.30 11.5 7.35 5.05 2.25

Model#3 0.34 8.5 5.46 8.4 5.37 1.10 1.05

The values of V (εref ) are not known, therefore different values are considered to see
the effect of total uncertainty of model prediction. The model with least uncertainty
(Vi(Yp)) is assumed to provide the best prediction. The value of V (εref ) affects each
model variance; however, the ranking of the model is not changed by this.

The parameter uncertainties in the model predictions are shown in Figure 8.17 whereas
the results of the AFA and PAFA can be visualised in Figure 8.19. It can be seen
that there is not much difference between the two approaches for these models because
the model predictions from the deterministic and the probabilistic approach are very
close. Figure 8.18 illustrates the total variance of the individual model. It is clear that
Model#3 appears to perform best out of the given models because of least total model
variance, whereas Model#2 in the case of Structure A and Model#1 in the case of
Structure H show the largest variances.
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Table 8.8 shows the results of averaged model and its variance for Structure A and
Structure H from the AFA and the PAFA.
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Figure 8.17: Parameter uncertainty in the selected models:
(left) Structure A,
(right) Structure H (cf. Table 8.7).
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Figure 8.19: Model uncertainty: parameter uncertainty in the selected models and overall
model uncertainty,
(left) Structure A,
(right) Structure H,
( ) AFA and
( ) PAFA.
( ) Model#1,
( ) Model#2,
(– –) Model#3.

Table 8.8: Model uncertainty from the Adjustment Factor Approach (AFA) and the
Probabilistic Adjustment Factor Approach (PAFA) (cf. Figure 8.19).

AFA PAFA

E(Y ) σ(Y ) V (Y ) CV (Y ) E(Y ) σ(Y ) V (Y ) CV (Y )

[m/s] [m/s] [m2/s2] [-] [m/s] [m/s] [m2/s2] [-]

Structure A

101.02 11.34 128.7 0.112 100.75 10.49 110.04 0.104

Structure H

11.14 2.06 4.25 0.185 11.18 2.21 4.92 0.198

8.5.1 Application to Theodorsen Circulation Function
Approximations

Variance based global uncertainty analysis (cf. Section 8.4) was performed first on
the input parameters of Structure A using Model#1 with different representations for
Theodorsen circulation function (cf. Section 4.3.1). The results of this analysis are shown
in Table 8.9 along with the considered model probabilities. For this analysis, same model
probabilities are assumed. The choice of model probabilities depends on the efficiency
of use and numerical stability.
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Table 8.9: Model parameters for Theodorsen circulation function approximations from
deterministic and probabilistic analysis considering stochastic input parameters (Model#1
Structure A).

Model P (Mi) Yi E(Yi) V (Yi) σ(Yi)

Ucr Ucr/B/fh Ucr Ucr/B/fh

[-] [m/s] [-] [m/s] [-] [m2/s2] [m/s]

C1 Eq. (4.24a) 0.143 93.8 18.23 93.8 18.20 137.3 11.72

C2 Eq. (4.24b) 0.143 95.1 18.48 95.0 18.47 138.6 11.77

C3 Eq. (4.24c) 0.143 93.9 18.25 93.9 18.24 135.8 11.65

C4 Eq. (4.24d) 0.143 93.0 18.07 93.0 18.06 134.2 11.58

C5 Eq. (4.24e) 0.143 91.7 17.83 91.7 17.82 129.1 11.36

C6 Eq. (4.24f) 0.143 93.8 18.23 93.8 18.22 137.3 11.72

C7 Eq. (4.24g) 0.143 93.6 18.19 93.6 18.18 135.5 11.64

The effect of parameter uncertainties on the model prediction can be seen in Figure 8.20a
whereas the results of the AFA can be visualised in Figure 8.20b. The total uncertainty
analysis is also plotted and it can be seen that there is not much difference between
the two approaches for this model scenario because the model predictions do not differ
much from each other and the deterministic values and the probabilistic mean values
are very close. Additionally, the model variances are very similar. Figure 8.21 shows
the total variance of the individual model. It is visible that the model from Eq. (4.24e)
(C5) appears to be the best model out of the given models because of least total
model variance, whereas model from Eq. (4.24b) (C2) has the largest variance. This
figure also shows that the major contribution comes from parameter uncertainty. Model
uncertainty is relatively small whereas uncertainty due to reference model is variable but
quantitatively could be much less than the parameter uncertainty.

10

15

20

25

C1 C2 C3 C4 C5 C6 C7

Model

U
cr
/B

f h

17.0 17.5 18.0 18.5 19.0 19.5
0.00

0.10

0.20

0.30

0.40

0.50

P

Ucr/Bfh
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(left) parameter uncertainty in the selected models,
(right) overall model variance from
( ) AFA and
( ) PAFA (cf. Section 8.9).
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Table 8.10: Model uncertainty for Theodorsen circulation function approximations
from the Adjustment Factor Approach (AFA) and the Probabilistic Adjustment Factor
Approach (PAFA) (cf. Figure 8.20).

AFA PAFA

E(Y ) σ(Y ) V (Y ) CV (Y ) E(Y ) σ(Y ) V (Y ) CV (Y )

[m/s] [m/s] [m2/s2] [-] [m/s] [m/s] [m2/s2] [-]

93.62 0.9407 0.8848 0.01 93.57 0.9423 0.8879 0.01
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Figure 8.21: Model uncertainty for Theodorsen circulation function approximations: total
uncertainty along reference model uncertainty.
(◦) C1,
(�) C2,
(4) C3,
(5) C4,
(∗) C5,
(+) C6,
(•) C7

8.5.2 Application to Flat Plate Aerodynamic Derivatives

The same approach has been also used on the flat plate derivatives obtained from
different sources to show its application. For this purpose, the aerodynamic derivatives
presented in Section 7.3.5 have been used. The structural properties of Structure A were
used to compute deterministic and probabilistic flutter limits using these aerodynamic
derivatives. The results and relevant parameters used in this example are presented in
Table 8.11.

Table 8.11: Model uncertainty for a flat plate: model parameters from deterministic and
probabilistic analysis considering stochastic input parameters.

Model P (Mi) yi E(yi) V (yi) σ(yi)

Ucr Ucr/B/fh Ucr Ucr/B/fh

[-] [m/s] [-] [m/s] [-] [m2/s2] [m/s]

Analytical 1/3 93.40 18.14 93.51 18.16 138.36 11.76

WTT [265] 1/3 114.19 22.18 114.28 22.19 138.24 11.75

CFD 1/3 88.70 17.23 88.65 17.22 115.00 10.72
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Figure 8.22a shows the model prediction and parameter uncertainties of individual
models. The results from the PAFA are plotted in Figure 8.22b along with the individual
models and their uncertainties. These results are also summarized in Table 8.12. It
is important to mention that only uncertainties in the structural input parameters
have been considered and uncertainties in the determination of individual aerodynamic
derivatives are not taken into consideration. The results show much higher model
uncertainties than the previous example as the model predictions are relatively far from
each other.
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Figure 8.22: Model uncertainty for a flat plate:
(left) parameter uncertainty in the models,
(right) comparison with model uncertainty from
( ) AFA and
( ) PAFA.
( ) A: analytical,
( ) W: wind tunnel tests,
(– –) C: CFD simulations.

Table 8.12: Model uncertainty for a flat plate from the AFA and the PAFA
(cf. Figure 8.22).

Adjustment factor approach Probabilistic adjustment factor approach

E(y) σ(y) V (y) CV (y) E(Y ) σ(Y ) V (Y ) CV (Y )

[m/s] [m/s] [m2/s2] [-] [m/s] [m/s] [m2/s2] [-]

98.76 11.07 122.62 0.112 98.81 11.11 123.50 0.112

8.6 Summary

Probabilistic flutter analysis has been presented here considering the variation in the
input structural parameters and the aerodynamic derivatives. A novel approach to
consider aerodynamic uncertainties for bridge deck sections is presented. Deterministic
as well as probabilistic sensitivity and uncertainty analyses have been described here.
A framework has been presented to consider the variation in the input parameters and
to study the propagation of uncertainty in the model response. Finally, the ranking of
the models is done based on the total uncertainty which includes parameter uncertainty,
model uncertainty and uncertainty in the choice of reference model selection.
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Chapter 9

Conclusions and Outlook

9.1 Summary

The objective of this study was to develop a framework for the assessment of numerical
prediction models for aeroelastic instabilities of bridges. Hitherto, model quality
assessment in bridge aerodynamics has not been able to attract much attention. The
attempt has been made in this thesis to apply model assessment in practical engineering
problems related to the field of bridge aerodynamics. It is hoped that this study will
help engineers with decisions during different design stages and to make a choice of an
appropriate model based on the problem in hand.

The assessment requires some mathematical measures and indicators to express the
fitness of the model for the intended purpose. The proposed model assessment is
based on sensitivity, parameter uncertainty, model uncertainty and model robustness.
Deterministic as well as probabilistic studies were carried out using the concepts of
sensitivity and uncertainty analyses in order to assess the model prediction.

Chapter 2 describes probabilistic fundamentals and assessment procedure based on
the sensitivity and uncertainty analyses. A methodology has been explained to solve
complex problems more efficiently by using a meta-modelling approach. The aeroelastic
phenomena related to the design and analysis of long-span bridges are introduced in
Chapter 3. The methods used for aerodynamic analysis are discussed in Chapter 4. A
wide range of aerodynamic and structural models has been described based mainly on
analytical and numerical methods. These aerodynamic and structural models were then
coupled in different ways to perform flutter stability analysis. Chapter 5 was devoted
to explain different model combinations and their possible applications were discussed in
the practical scenario. The following models were studied:

� Model#1: Fully-Analytical based on Theodorsen equations for motion-induced
aerodynamic forces with 2D structural model (Section 5.4).

� Model#2: Empirical approaches for 2D only, such as Selberg, Rocard etc.
(Section 5.5).

� Model#3: Derivative-based eigenvalue analysis for Theodorsen flat plate
aerodynamic derivatives and Scanlan derivatives from the CFD forced vibration
simulations with 2D and 3D structural model (Section 5.6.5).

� Model#4: Derivative-based FSI simulations for Theodorsen flat plate aerodynamic
derivatives and Scanlan derivatives from the CFD forced vibration simulations with
2D and 3D structural model (Section 5.6.6).

� Model#5: Fully-coupled CFD simulations based on the VPM with 2D and quasi-3D
structural model (Section 5.7).
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Computer codes were developed for the first four models, whereas numerical simulations
were carried out for Model#5 in a flow solver based on the VPM. In Chapter 6, these
models were applied to the selected reference objects to show their application to the
engineering problems.

The sensitivity of flutter limit to different input parameters was also studied to highlight
the importance of structural parameters and aerodynamic behaviour of the cross-sectional
shape. To the best of author’s knowledge, this is the first work that shows the study of
such a wide range of section geometry variation. Chapter 7 describes the studies related
to this aspect. A method has been presented to utilise existing data from WTT or
CFD simulations to estimate the aeroelastic instability limit of a similar cross section
by using response surface techniques.

A framework for the probabilistic flutter analysis is presented in Chapter 8. Concepts of
sensitivity analysis have been used to identify and rank the important input parameters.
First order and total sensitivity indices are used as mathematical indicators to express
the relative importance of input parameters. A larger value of the sensitivity index shows
that the input parameter has a greater influence on the model output, and vice versa.
This could be useful for the engineer to choose the most influential input parameters
for further investigations.

The sensitivity analyses were used for the structural input parameters as well as for the
aerodynamic derivatives to identify their relative importance. For this purpose, a method
of screening was used to show local effects and a variance-based sensitivity analysis was
used for global effects. The response surface method was suggested to be used here
for the complex model in order to make the variance-based approach more efficient. A
novel approach to quantify the sensitivities of aerodynamic derivatives was developed.
The sensitivity indices were computed in order to identify the aerodynamic derivatives
that have a major influence on the flutter limit.

The effect of parameter uncertainty on the flutter limit was quantified as well. The same
probabilistic approach as that of sensitivity analysis was used here. The CFD simulations
were performed to obtain the probabilistic description of aerodynamic derivatives of real
sections. Furthermore, models were ranked by using the concept of total uncertainty
which includes the input parameter uncertainty and the model uncertainty. This was
done by making use of the AFA to quantify model uncertainty which is estimated by
the difference between the model average and the adjusted model.

9.2 Conclusions

Some main observations are made from the deterministic flutter analysis. The flutter
limits computed from the simplified 2DOF model are considered conservative when
compared to those obtained from more realistic 3DOF models. The effect of structural
coupling between horizontal displacement and torsional motion is low on flutter onset
for such a relatively shorter span of the selected reference object than Akashi-Kaikyo
Bridge where a significant effect of structural mode coupling has been seen to decrease
the flutter limit [62].

Theodorsen’s flat plate prediction based on potential flow theory is simple and easy to
use but is only applicable for a 2D flow and for a flat plate or an airfoil. It cannot be
used for bridge cross sections which are bluff due to flow separation and reattachment.
However, it serves as a starting point or providing with the reference value to compare
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flutter predictions of other complex models. Scanlan’s model is more commonly used and
is preferred as it gives a more direct assessment about the nature of the aerodynamic
behaviour of the cross section. Simplified approaches are useful to better understand
the mechanism related to flutter phenomenon but cannot be trusted for the final design
due to their inability to take into account an arbitrary shape of a section.

The choice of the bridge deck section is important where the aerodynamic behaviour is
a governing design consideration. It can save a significant amount of effort and resources
if suitably selected in the early design stage. The appropriate selection of the shape of
the deck is much more effective than changing the structural properties of the bridge to
improve its behaviour against aeroelastic instabilities. The structural input parameters
which have the major influence on the flutter limit are the torsional frequency and,
after that, the mass moment of inertia. The damping ratio has an insignificant effect
on the flutter limit, since, in the case of aeroelastic instabilities, structural damping is
not much effective as compared to in Buffeting response and Vortex-induced Vibrations.

Frequency domain methods are commonly used because of their simplicity and efficiency;
however, they are only for a linear structural model and do not consider nonlinearities.
Therefore, the major part of the current research on the analytical models is being
carried out in the time domain in order to consider the aerodynamic nonlinearities and
the nonlinear fluid memory.

Numerical methods have gained much attention and development in the last decades
and are used beside the analytical and experimental methods. These methods still have
limitations with the complexity and nature of 3D structures. It is a developing field,
and at this point, it provides a useful alternative to the WTT only for preliminary
studies; however, for final designs, the WTT are preferred.

These observations can help to explain findings of the sensitivity and uncertainty
analyses. Some important conclusions are drawn in the light of this research. It
is important to mention that these conclusions are based on the analyses of the
reference examples with a moderate span length. The analysis on other spans and
structural configurations might alter some outcomes. However, the framework explained
can be applied on the same lines, irrespective of the structure type. It is also
important to mention that although some procedures have been suggested and applied
to improve efficiency, the computational cost of performing such analyses is usually
high. Nevertheless, the results obtained are useful and can be used elsewhere for further
investigations.

The probabilistic approach provides essential insight into the phenomena of aeroelastic
instabilities. The results of variance-based sensitivity analysis show that the flutter
limit is sensitive to the structural parameters as well as the aerodynamic derivatives.
However, the mean value of the flutter limit is not very sensitive to the input parameter
uncertainties. The effect of each aerodynamic derivative is different for different cross
sections and it is also important that at what reduced speed range the final flutter limit
is located. It can be concluded that the flutter limit is not sensitive to small variations
in the aerodynamic derivatives but greatly depends on the type of cross section.

The effect of correlation was also shown to have some influence on the model predictions.
The approach of considering several cases of correlation was used as the actual
correlation was unknown. The importance of the correlation between the structural
parameters was also highlighted. The correlation was considered for the aerodynamic
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derivatives by using fully correlated, uncorrelated and partially correlated aerodynamic
derivatives. It was observed that higher correlation between the aerodynamic derivatives
leads to a smaller uncertainty in the model output.

The probabilistic flutter analysis provides more information on the nature of the flutter
limit than the corresponding deterministic flutter analysis. The approach is superior
to deterministic method as it shows the distribution of the flutter limit as well as the
interval of the likelihood of flutter onset. Moreover, this method can be used for a
probabilistic design or a performance-based design.

The detailed wind tunnel investigations are expensive and time-consuming; however, the
presented approach for sensitivity and uncertainty analyses can limit these tests in the
final design stage by focusing on the effects of those parameters which are more sensitive.

The flutter limit of a reference bridge was computed in a uniform as well as in a
turbulent flow and the influence of turbulence on the flutter onset was quantified for
several cases of interest. Most of the CFD codes are based on laminar flow and do not
account for inflow turbulence. An analogous approach to the upstream disturbance to
create turbulent flow in the wind tunnel was considered for the numerical simulations
in this study. A number of rectangular cross-sections in the flow were placed on the
upstream side of the main section to generate turbulence in the incident uniform flow.
Vorticity shed from these cross sections evolved into a turbulent flow and carried with
the flow to the main section. Fully-coupled CFD simulations were then performed on
the reference section with different situations of turbulent flow. It was observed that
the free stream turbulence can have a substantial and systematic effect on the response
amplitude and the flutter limit. The flutter limit was observed to decrease for the
studied reference object with a streamlined section. The approach is computationally
feasible and is very similar to the well-accepted approach used in the WTT; however, it
is important to meet the requirements of the atmospheric wind flow characteristics. The
approach presented to generate turbulent flow in the numerical simulations is subjected
to 2D limitations. However, it has been shown to provide the basis for capturing a 2D
approximation of a 3D wind flow.

Only a few parameters have been considered probabilistic; however, it may be possible
that the parameters which are considered deterministic can have some influence on the
predicted flutter limit when considered probabilistic. Therefore, the model assessment
must be considered a continuous process, as each model assessment is a specific case
and is only applicable to similar cases. The model assessment results should not be
used directly for any other type of problem if it is only assessed for a certain case.

9.3 Recommendations for Further Research

The limitations presented in the current model assessment scheme guide the way to
develop even more advanced approach. The influence of the individual model components
on the overall model prediction can be evaluated. This can be done by using the
concepts of sensitivity and uncertainty analyses. It is viable to develop adaptive or
hybrid models where the choice of these components is governed by keeping a balance
between quality and efficiency.

A possible direction of further research could be towards efficiency, optimisation and
reliability. The current implementation can be extended for the aerodynamic shape
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optimisation to automatically optimise the most suitable shape against a critical
aerodynamic phenomena.

The deck of a bridge is the most important component studied for the aeroelastic effects.
Often 2D section models are generated which are calibrated from global models; however,
these models cannot reproduce the 3D behaviour of the structure. This simplification is
valid only for cases where uncoupled and distinct structural modes exist. The influence
of some other parameters on the flutter limit can be studied such as variation in mode
shapes, the coupling of structural modes and bridge configurations. Further case studies
can be evaluated using different distributions of the input parameters. Response surface
methods have been used here by utilising polynomial regression and moving least-squares.
These methods reduce the number of required simulations to a great extent. However,
there exist several other approaches which can work with even a smaller size of data
which needs further examination.

The uncertainties in the numerical parameters have not been considered in this study.
The models have been used without the optimum choice of numerical parameters. The
aim of this research was not to improve the already existing models. The important
points which still need to be investigated are the sensitivities to the numerical parameters
and the optimum choice of numerical parameters. The concepts of sensitivity analysis
and optimisation may be used to update these parameters. This investigation requires
an efficient sensitivity analysis scheme for the choice of input parameters.

The approach presented for turbulence generation can also be used to study other
phenomena, such as Vortex-induced Vibrations, to better understand the effect of
turbulent flow on the FSI problems. Turbulent flow was studied and modelled by placing
different geometrical shapes in the CFD simulations and the flow characteristics were
quantified. Alternatively, vorticity defining the turbulent flow characteristics may be
introduced on the upstream side of the main cross section.

Structural complexity and the uncertainty in the flow demands more complex models
which can account for the aforementioned parameters. Therefore, the quasi-3D approach
could be a viable solution which can take into account the 3D behaviour of the
structure as well as oncoming turbulent flow. Consequently, more research is necessary
on considering different wind characteristics in the flow.

The experimental methods have not been focused here. There exists uncertainty in
the evaluation of experimental data obtained from different wind tunnels as well as
different wind tunnel models, such as free or forced vibration tests and SDOF tests
or 2DOF tests to determine aerodynamic derivatives. The model assessment for wind
tunnel experiments can be carried out.

The CFD simulations provide useful insight to better understand the process of FSI
by using flow fields as the information of the entire domain is available which is not
possible to achieve in wind tunnels. It is also essential to establish a benchmark solution
for the aeroelastic instability phenomenon of flutter in the CFD simulations as well as
in the wind tunnel experiments. The future of aerodynamic analysis of structures is
anticipated through the use of CFD approach coupled with the semi-analytical methods.

This study has a wide range of application in other fields as well. Flutter is generally
considered as a destructive phenomenon but it can be turned into an environmentally
friendly energy source by utilising small plate-like devices as energy harvesters. Energy
harvesters transform kinetic energy of wind into electrical energy to provide power to
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small-scale electronic devices such as wireless sensors and mobile electronic devices. The
outcome of this research has enormous relevance to the development of energy harvesting
which is an active research field and is growing as the demand for renewable energy
sources continues to increase.
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[151] Klöppel, K. and Thiele, F. Modellversuche im windkanal zur bemessung von
brücken gegen die gefahr winderregter schwingungen. Der Stahlbau, 36(12):353–365,
1967.

[152] Matsumoto, M., Matsumiya, H., Fujiwara, S., and Ito, Y. New consideration
on flutter properties basing on sbs: Fundamental flutter mode, similar selberg’s
formula, torsional divergence instability, and new coupled flutter phenomena
affected by structural coupling. In The 6th International Colloquium on Bluff Body
Aerodynamics and Applications (BBAA6), Milano, Italy, 2008.

[153] Put, T. v. d. Rigidity of structures against aerodynamic forces. IABSE publications,
36:189–196, 1976.

[154] Fu, C. and Wang, S. Computational Analysis and Design of Bridge Structures. CRC
Press, 2014.

[155] Matsumoto, M. Aerodynamic damping of prisms. Journal of Wind Engineering and
Industrial Aerodynamics, 59:159–175, 1996.

[156] Hoa, L. T. Flutter stability analysis theory and example. Technical report, 2004.

[157] Jurado, J. and Hernández, S. Sensitivity analysis of bridge flutter with respect to
mechanical parameters of the deck. Structural and Multidisciplinary Optimization,
27(4):272–283, 2004.

[158] Hernández, S., Jurado, J. A., Nieto, F., and Mosquera, A. Multidisciplinary
approach to aeroelastic studies of long-span bridges. Structural and Multidisciplinary
Optimization, 35(4):365–374, 2008.

[159] Dung, N. N., Miyata, T., Yamada, H., and Minh, N. N. Flutter responses in
long span bridges with wind induced displacement by the mode tracing method.
Journal of Wind Engineering and Industrial Aerodynamics, 77-78:367–379, 1998.

[160] Matsumoto, M., Nihara, Y., Kobayashi, Y., Sato, H., and Hamasaki, H. Flutter
mechanism and its stabilization of bluff bodies. In The 9th International Conference
on Wind Engineering (ICWE1995), New Delhi, India, pages 827–838, 1995.

[161] Matsumoto, M., Kobayashi, Y., and Shirato, H. The influence of aerodynamic
derivatives on flutter. Journal of Wind Engineering and Industrial Aerodynamics,
60:227–239, 1996.

[162] Matsumoto, M., Mizuno, K., Okubo, K., Ito, Y., and Matsumiya, H. Flutter
instability and recent development in stabilization of structures. Journal of Wind
Engineering and Industrial Aerodynamics, 95:888–907, 2007.

[163] Matsumoto, M., Goto, K., and Yabutani, T. Heaving branch coupled flutter for
long span bridge. In Long-Span and High-Rise Structures, IABSE Symposium, Kobe,
pages 259–264, 1998.

[164] Matsumoto, M., Yoshizumi, F., Yabutani, T., Abe, K., and Nakajima, N. Flutter
stabilization and heaving-branch flutter. Journal of Wind Engineering and Industrial
Aerodynamics, 83:289–299, 1999.

201



Bibliography

[165] Matsumoto, M., Okubo, K., Ito, Y., Matsumiya, H., Trein, C. A., and Kim, G.
Branch switching characteristics of coupled flutter instability. In The 19th KKCNN
Symposium on Civil Engineering, Kyoto, Japan, 2006.

[166] Matsumoto, M., Mizuno, K., Okubo, K., and Ito, Y. The complex branch
characteristics of coupled flutter. In The 4th International Symposium on
Computational Wind Engineering (CWE2006), Yokohama, Japan, 2006.

[167] Matsumoto, M., Okubo, K., Ito, Y., Matsumiya, H., and Kim, G. The complex
branch characteristics of coupled flutter. Journal of Wind Engineering and Industrial
Aerodynamics, 96:1843–1855, 2008.

[168] Matsumoto, M., Matsumiya, H., and Fujiwara, S. Branch switch of coupled flutter.
In The 7th Asia-Pacific Conference on Wind Engineering (APCWE7), Taipei, Taiwan,
2009.

[169] Matsumoto, M., Taniwaki, Y., and Shijo, R. Frequency characteristics in various
flutter instabilities of bridge girders. Journal of Wind Engineering and Industrial
Aerodynamics, 90:1973–1980, 2002.

[170] Matsumoto, M., Shirato, H., Mizuno, K., Shijo, R., and Hikida, T. Flutter
characteristics of h-shaped cylinders with various side-ratios and comparisons with
characteristics of rectangular cylinders. Journal of Wind Engineering and Industrial
Aerodynamics, 96:963–970, 2008.

[171] Yang, Y.-X., Ge, Y.-J., and Xiang, H.-F. Flutter mechanism and flutter modality
investigation for thin plate sections. In The 4th International Symposium on
Computational Wind Engineering (CWE2006), Yokohama, Japan, 2006.

[172] Yang, Y.-X., Ge, Y.-J., and Zhang, W. Investigation on the flutter mechanism of
thin plate sections. In The 5th European and African conference on Wind Engineering
(EACWE2009), Florence, Italy, 2009.

[173] Yang, Y., Ge, Y., and Xiang, H. Flutter control effect and mechanism of
central-slotting for long-span bridges. Frontiers of Architecture and Civil Engineering
in China, 1(3):298–304, 2007.

[174] Chen, X. Improved understanding of bimodal coupled bridge flutter based on
closed-form solutions. Journal of Structural Engineering, 133(1):22–31, 2007.

[175] Beliveau, J. G., Shinozuka, M., and Vaicaitis, R. Motion of suspension bridge
subjected to wind loads. Journal of the Structural Division, 103(6):1189–1205, 1977.

[176] Diana, G., Bruni, S., Cigada, A., and Collina, A. Turbulence effect on flutter
velocity in long span suspension bridges. Journal of Wing Engineering and Industrial
Aerodynamics, 48:329–342, 1993.

[177] Kovacs, I., Svensson, H. S., and Jordet, E. Analytical aerodynamic investigation of
cable-stayed helgeland bridge. Journal of Structural Engineering, 118:147–168, 1992.

[178] Miyata, T., Yamada, H., Boonyapinyo, V., and Santos. Full model testing of large
cable-supported bridges. In The 9th International Conference on Wind Engineering
(ICWE1995), New Delhi, India, pages 249–280, 1995.

202



BIBLIOGRAPHY

[179] Miyata, T., Yamada, H., Boonyapinyo, V., and Santos. Analyitical investigation
on the response of a very long suspension bridge under gusty wind. In The 9th
International Conference on Wind Engineering (ICWE1995), New Delhi, India, pages
1006–1017, 1995.

[180] Xiang, H., Liu, C., and Gu, M. Time-domain analysis for coupled buffeting
response on long span bridge. In The 9th International Conference on Wind
Engineering (ICWE1995), New Delhi, India, pages 881–892, 1995.

[181] Boonyapinyo, V., Miyata, T., and Yamada, H. Advanced aerodynamic analysis of
suspension bridges by state-space approach. Journal of Structural Engineering, 125:
1357–1366, 1999.

[182] Chen, X., Matsumoto, M., and Kareem, A. Aerodynamic coupling effects on flutter
and buffeting of bridges. Journal of Engineering Mechanics, 126(1):7–16, 2000.

[183] Chen, X., Matsumoto, M., and Kareem, A. Time domain flutter and buffeting
response analysis of bridges. Journal of Engineering Mechanics, 126(1):17–26, 2000.

[184] Chen, X., Kareem, A., and Matsumoto, M. Multimode coupled flutter and
buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial
Aerodynamics, 89:649–664, 2001.

[185] Chen, X. and Kareem, A. Aeroelastic analysis of bridges under multicorrelated
winds: Integrated state-space approach. Journal of Engineering Mechanics, 127(11):
1124–1134, 2001.

[186] Thang, N. D., Katsuchi, H., Yamada, H., and Saski, E. Effects of approximation
of self-excited forces by rational function on wind-induced response of long span
bridge. Journal of Structural Engineering, 54:420–428, 2008.

[187] Øiseth, O., Rönnquist, A., and Sigbjörnsson, R. Time domain modeling of
self-excited aerodynamic forces for cable-supported bridges: A comparative study.
Computers and Structures, 89:1306–1322, 2011.
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Appendix A

Methods of Aerodynamic Analysis

Chapter 4 explains the methods of aerodynamic analysis. Section 4.3.3 of this chapter
focuses on the numerical methods in general where commonly used CFD approach have
been listed. Table A.1 and A.2 provide some of the studies made on different study
objects with the help of these approaches. Table A.3 shows the selected studies based
on the vortex method.

Section 4.4 discusses the determination of aerodynamic derivatives from different
methods. Table A.4 provides wind tunnel tests performed to obtain aerodynamic
derivatives by using free, forced and buffeting response. The forceed vibration tests were
performed in this dissertation therefore, Table A.5 provides amplitudes of oscillations
considered for forced vibration tests conducted for different structures.
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Table A.1: Different CFD approaches based on FVM and FEM used to study
aerodynamic phenomena (F: Flutter limit, D: Aerodynamic derivative, C: Static wind
coefficients, P: Pressure, R: Reynolds number dependence).

Structure Phenomena Reference

NACA-0012 D, R [300]

Rectangular, B/D=8 D [238]

Great Belt, 200mm D [239]

Millau Viaduct, 200mm D [239]

Tacoma Narrows, 200mm D [239]

Slotted rectangular, 450mm P, D [301]

Slotted flat box, 370mm P, D [301]

Great Belt C, D [302]

Normandy C, D [302]

π-sec with B/D=6 A∗2 [303]

Great Belt D [304]

Hume, 445×33.4mm D, F [142]

Slotted box girder C [305]

Great Belt F [306]

Tacoma F [306]

Box girder, B/D = 11.6 C, D, F [307]

Rectangular, B/D = 4 C, D [308]

Rectangular, B/D = 4 C, D [309]

Flat plate D [310]

Bridge section D [310]

Incheon, 200×30mm D [311]

Nine bridge decks, 200mm D, R [111]

Five bridge sections D [312]

Hume, 445×33.4mm D, F [313]
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APPENDIX A. METHODS OF AERODYNAMIC ANALYSIS

Table A.2: Different CFD approaches based on FVM and FEM used to study
aerodynamic phenomena (F: Flutter limit, D: Aerodynamic derivative, C: Static wind
coefficients, P: Pressure, R: Reynolds number dependence).

Structure Phenomena Reference

Circular cylinder C [266]

Great Belt, 375×54.7mm D [266]

NACA0012 C, D [314]

U-shape, G1, G2 C, D [314]

Four generic sections C, D, L [315]

Thin flat plate, 700×3.5mm D [138]

2nd Nanjing Yangtze, 772×63mm D [138]

Bridge deck, 369×60mm P, C, D [316]

Bridge deck, 366×66mm P, C, D [317]

Rectangular, 300×60mm F [318]

Streamlined, 404×60mm F [318]

Great Belt, 31×4.34m D, F [103]

Circular cylinder C [319]

Great Belt, 375×54.7mm D [266]

R-5, 8, 10, 12.5, 15, 20 C, D, F [320]

Flat plate, 1000×10mm P, D [321]

Great Belt, 31×4.4m P, D [321]

Bridge deck, 366×66mm P, C, D [322]

Bridge deck, 366×66mm P, C, D [323]

Rectangular cylinder, B/D=4 C, D [324]

Rectangular cylinder, B/D=4.9 C, D [325]

G1 section C, D [325]

Six deck sections, 366×66mm R, C, D, F [326]
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Table A.3: Different CFD approaches based on vortex method used to study
aerodynamic phenomena (F: Flutter limit, D: Aerodynamic derivative, C: Static wind
coefficients, P: Pressure, R: Reynolds number dependence).

Structure Phenomena Reference

Great Belt, 31000×4337mm P, C, D, F [118]

Great Belt D, F [327]

Flat plate, B/D==200 D [328]

Tacoma Narrows, 12×2.4m C, D [117, 329]

Great Belt, 31×4.4 C, D [117, 329]

Approach span, 25.8×7m C, D [117, 329]

Gibraltar APP, 65×2.5m C, D [117]

Five generic sections, G1-G5 C, D [141]

Five generic sections, G1-G5 C, D [34]

Great Belt, 31×4m D, F [330]

Flat plate, B/D=100 D, F [128]

Millau Viaduct, 388×60.2mm D, F [128]

Great Belt, 31×4m C, D [243]

H-shaped C [119]

Humen and Great Belt C [331]

Nanjing and Runyang C [331]

Jinsha D, F [331]

Tacoma Narrows C, A∗2 [56]

Stonecutters C, D, F [332]

Tacoma Narrows A∗2 [333]
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Table A.4: Wind tunnel tests performed for different structures to obtain aerodynamic
derivatives.

Structure Size Response Reference

B ×D [mm]

(B/D [-])

Rectangular 200×20 Coupled-Forced [334]

Rectangular 200×10 Coupled-Forced [334]

Box girder 292.7×33.7 Free [335]

Flat plate 450×20 Free [92]

Jiangyin, 1:70 36.9×3.0m Free [92]

Streamlined - Free, Buffeting [336]

Dual carriageway - Free, Buffeting [336]

Plate, 2DOF, 3DOF 460×45 Free [337]

Streamlined box 450×32 Free [337]

P-shaped 452×46 Free [337]

NACA-0020, 3DOF 314 Free [265]

Chamfered plate (25) Forced [137]

Rectangle (5,8,10,12.5,15,20) Free [338]

NACA-0020 456 Forced [139]

Tacoma Narrows 411×82 Forced [139]

Strelasund 324×103 Forced [139]

Model A, 1:250 123×13 Free, Forced [339]

Model B, 1:500 61.33×6.35 Free, Forced [339]

Extradosed, 1:100 295.4 Forced [340]

Flat plate 450×20 Free [341]

Industrial-Ring-Road 399×35 Free [341]

Industrial-Ring-Road 399×35 Free [342]

Fairing-modified, 1:90 399×35 Free [342]

Soffit plate modified 399×35 Free [342]

Combination of two 399×35 Free [342]

Single-box 450×70 Free [343]

Multiple-box girder 609×52 Free [343]

Great Belt, 1:60 31×4m Free [140]

Sutong 812 Free [263]

Suramadu 600 Free [263]

Flat plate - Free [136]

Sutong 41×4m Free [136]

Stonecutters 53.3×4m Free [136]

Akashi-Kaikyo 35.5×14m Free [136]
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Table A.5: Amplitudes of heave and pitch used for forced vibration tests.

Structure Size Heave amplitude Pitch amplitude Reference

B ×D [mm] ho/B [-] αo [◦]

(B/D [-]) (ho [mm])

Rectangular 200×20 ho/αo = 0.0637 [334]

Rectangular 200×10 ho/αo = 0.1408 [334]

Great Belt 31000 0.05 5 [118]

Five generic - 0.05 3 [34],

sections, G1-G5 - 0.05 3 [141]

Flat plate (100) 0.50 3 [128]

Great Belt 200 0.04 5 [239]

Tacoma Narrows 200 0.04 5 [239]

Rectangular 200 0.04 5 [239]

Rectangular 200 (8) 0.04 8 [238]

Great Belt 200 0.04 8 [238]

Millau Viaduct 200 0.04 8 [238]

Tacoma Narrows 200 0.04 8 [238]

π-section 12000×2000 - 1.72 [303]

Thin plate 40000(100) (100) 3 [84]

H-shape 11900 (100) 3 [84]

Great Belt 31000 (100) 3 [84]

PWRI - 0.01 1 [280]

ISU 300 0.05 2.8 [280]

Rectangular (2-5) 0.01-0.20 2.8 [280]

Nine bridge decks 200 0.01, 0.02, 0.04 2, 5, 8 [111]

Model A, 1:250 123×13 (0.5-1.49) 1.77-2.35 [339]

Model B, 1:500 61.33×6.35 (5-6) 3.43 [339]

Thin flat plate 700×3.5 (2.5-6.12) 0.35-0.86 [138]

2nd Nanjing Yangtze 772×63 (2.5-5.59) 0.40-0.89 [138]

Great Belt East, 1:60 31000×4000 (16) 2 [140]

Bridge Section 369.5×60.6 (4) 1 [316]

Bridge Section 366×66.6 (4) 1 [317]

Bridge Section 366×66.6 (4) 1 [322]

Bridge Section 366×66.6 (4) 1 [323]
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Appendix B

Models for Flutter Analysis

Section 5.6.4.2 discusses SDOF torsional instability. Scanlan’s form of aerodynamic
derivatives is commonly used; however, representation of motion-induced forces Starossek
[61] in complex form are also used sometimes. The SDOF torsional instability limit can
be determined using complex representation in the following section.

B.1 Pure Torsional Motion in Complex Form

In complex form the areoelastic instability in torsional motion is shown as follows:

c′′αα = gα

(
I

πρb4
+ c′αα

)
, (B.1)

µγ =
m

πρb2
, r =

√
I/M (B.2)

gα = 2ξα, (B.3)

Ucr =
ωαb

k (c′′αα = gαµγr2)
. (B.4)
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Appendix C

Flutter Analysis of Reference Objects

Chapter 6 provides the application of models presented in Chapter 5 on the reference
objects. Some details of the analyses made on the reference objects are presented here.

C.1 Specifications of Computer used for VXflow Simulations

The system used to run the VXflow simulations has the following specifications:

� Processor: Intel Core i7-2600K 3.4GHz

� RAM: DDR3-1600 16GB

� Cache: 8MB

� Operating System: Ubuntu
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C.1. Specifications of Computer used for VXflow Simulations

Figure C.1: Isometric view of bearing arrangement, and arrangements of joints in bridge
deck at main tower of the Lillebælt suspension bridge.
A: Stiffening box girder,
B: Bracket for wind bearing,
C: Wind bearing support,
D: Expansion joint on bridge deck,
E: Support for expansion joint,
L: Pendulum bearing,
P: Main tower,
R: Main tower portal beam
(cf. Section 6.3) [33].
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APPENDIX C. FLUTTER ANALYSIS OF REFERENCE OBJECTS

Table C.1: Modal properties from finite element model of the Lillebælt Suspension
Bridge (Mode 1 to 30) (cf. Table 6.3)
(V: vertical, H: horizontal, T: torsional, S: symmetrical, A: unsymmetrical).

Mode Circular
frequency

Frequency Period Damping
ratio

Modal
mass

Mode type

# [rad/s] [Hz] [s] [%] [t]

1 0.982 0.156 6.40 1.0 4599 VS

2 1.010 0.161 6.22 1.0 4218 VA

3 1.303 0.207 4.82 1.0 4308 VA side span

4 1.805 0.287 3.48 1.0 3505 HS

5 1.845 0.294 3.41 1.0 3032 VS

6 2.893 0.460 2.17 1.0 3379 VA

7 3.068 0.488 2.05 1.0 4488 VS side span

8 3.142 0.500 2.00 1.0 7342 TS

9 3.518 0.560 1.79 1.0 18041 TA

10 4.173 0.664 1.51 1.0 3873 VA side span

11 4.233 0.674 1.48 1.0 4601 VS

12 4.257 0.678 1.48 1.0 3429 VS side span

13 4.286 0.682 1.47 1.0 2576 VA side span

14 4.946 0.787 1.27 1.0 2506 TS+Tower rotation

15 4.960 0.789 1.27 1.0 8723 Tower long A

16 4.988 0.794 1.26 1.0 9364 TS+Tower long S

17 5.479 0.872 1.15 1.0 11835 VS+Tower tran A

18 5.676 0.903 1.11 1.0 3866 VA

19 6.087 0.969 1.03 1.0 8018 VS+Tower tran A

20 6.480 1.031 0.97 1.0 2322 TA

21 7.010 1.116 0.90 1.0 4258 HA+TA

22 7.457 1.187 0.84 1.0 3300 VS

23 8.019 1.276 0.78 1.0 1767 TS side span

24 8.191 1.304 0.77 1.0 3035 VS side span

25 8.195 1.304 0.77 1.0 3037 VA side span

26 8.235 1.311 0.76 1.0 1870 TA side span

27 8.738 1.391 0.72 1.0 1720 TS+Cable mode

28 9.149 1.456 0.69 1.0 4691 VA

29 9.774 1.556 0.64 1.0 11123 Tower long S

30 10.217 1.626 0.62 1.0 8160 VA
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C.1. Specifications of Computer used for VXflow Simulations

Table C.2: Modal properties from finite element model of the Lillebælt Suspension
Bridge (Mode 31 to 50) (cf. Table 6.3)
(V: vertical, H: horizontal, T: torsional, S: symmetrical, A: unsymmetrical).

Mode Circular
frequency

Frequency Period Damping
ratio

Modal
mass

Mode type

# [rad/s] [Hz] [s] [%] [t]

31 10.355 1.648 0.61 1.0 3585 HS side span

32 10.357 1.648 0.61 1.0 3599 HA side span

33 11.298 1.798 0.56 1.0 2775 VS

34 11.401 1.814 0.55 1.0 13907 Tower tran S+TS side
span

35 11.423 1.818 0.55 1.0 13969 Tower tran A+TA
side span

36 11.582 1.843 0.54 1.0 1643 TA

37 13.100 2.085 0.48 1.0 2614 VA+VA side span

38 13.155 2.094 0.48 1.0 2142 VS side span

39 13.479 2.145 0.47 1.0 2844 VA

40 14.163 2.254 0.44 1.0 1355 TS side span

41 14.164 2.254 0.44 1.0 1350 TA side span

42 14.298 2.276 0.44 1.0 14632 Tower tran S+VS side
span

43 14.330 2.281 0.44 1.0 16379 Tower tran A+VA
side span

44 14.418 2.295 0.44 1.0 5059 HS

45 14.570 2.319 0.43 1.0 1663 TS

46 15.539 2.473 0.40 1.0 1560 VS

47 16.613 2.644 0.38 1.0 13979 HA+Tower long

48 17.578 2.798 0.36 1.0 1639 TA

49 17.906 2.850 0.35 1.0 9567 HS

50 18.029 2.869 0.35 1.0 1297 VA
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Figure C.2: Derivative-based eigenvalue analysis: multimode flutter analysis for the
Lillebælt Suspension Bridge using analytical aerodynamic derivatives with unsorted
eigenvalues:
(top) effective frequencies,
(bottom) effective damping ratios (cf. Section 6.5.3).

C-5



C.1. Specifications of Computer used for VXflow Simulations
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Figure C.3: Derivative-based eigenvalue analysis: multimode flutter analysis for the
Lillebælt Suspension Bridge using CFD aerodynamic derivatives for Structure A with
unsorted eigenvalues:
(top) effective frequencies,
(bottom) effective damping ratios (cf. Section 6.5.3).
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APPENDIX C. FLUTTER ANALYSIS OF REFERENCE OBJECTS

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2
−15

−10

−5

0

5

10

15

 

 

Re(λn)

Im
(λ

n
)

Mode 1
Mode 4
Mode 5
Mode 8
Mode 27
Mode 44

0 10 20 30 40 50 60 70 80 90 100 110
0.00

0.50

1.00

1.50

2.00

2.50

U∞ [m/s]

f n
[H

z]

0 10 20 30 40 50 60 70 80 90 100 110
0.00

0.25

0.50

0.75

1.00

U∞ [m/s]

ξ n
[-
]

Figure C.4: Derivative-based eigenvalue analysis: multimode flutter analysis for the
Lillebælt Suspension Bridge using CFD aerodynamic derivatives for Structure A:
(top) eigenvalue paths λn as wind speed U∞ increases to the instability limit
(middle) effective frequencies fn,
(bottom) effective damping ratios ξn,
(mode combination V, start U∞=1 m/s, ∆U∞=0.5 m/s, Ucr=101.0 m/s)
(cf. Section 6.5.3).
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C.1. Specifications of Computer used for VXflow Simulations
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Figure C.5: Fully-coupled CFD simulations: response of Structure H from single slice
2D simulations at wind speeds considering only heave DOF
(top to bottom) U∞=16-20 m/s (cf. Section 6.5.5).
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Figure C.6: Fully-coupled CFD simulations: response of Structure H from single slice
2D simulations at wind speeds considering only pitch DOF
(top to bottom) U∞=14-18 m/s (cf. Section 6.5.5).
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Appendix D

Sensitivity of Flutter Limit to Different
Parameters

Chapter 7 focuses on the sensitivity of parameters to flutter limit. This appendix shows
the aerodynamic derivatives determined from forced vibration simulations corresponding
to these studies.
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APPENDIX D. SENSITIVITY OF FLUTTER LIMIT TO DIFFERENT
PARAMETERS
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PARAMETERS

0
0.1

0.2
0.3 0

4
8

12
16

−100

0

100

0
0.1

0.2
0.3 0

4
8

12
16

−50

0

50

0
0.1

0.2
0.3 0

4
8

12
16

−40

−20

0

0
0.1

0.2
0.3 0

4
8

12
16

−100

0

100

0
0.1

0.2
0.3 0

4
8

12
16

−50

0

50

0
0.1

0.2
0.3 0

4
8

12
16

−5

0

5

0
0.1

0.2
0.3 0

4
8

12
16

−10

0

10

0
0.1

0.2
0.3 0

4
8

12
16

−20

0

20

H
∗ 1

H
∗ 2

H
∗ 3

H
∗ 4

A
∗ 1

A
∗ 2

A
∗ 3

A
∗ 4

D∗/BD∗/B

D∗/BD∗/B

D∗/BD∗/B

D∗/BD∗/B

vrvr

vrvr

vrvr

vrvr

Figure D.4: Sensitivity of flutter limit to section geometry: aerodynamic derivatives from
forced vibration simulations on a streamlined section with increasing depth (D∗/B =
0.01− 0.3) (cf. Figure 7.10).

D-5



0
0.04

0.08
0.12

0.16 0
4

8
12

16
−20

−10

0

0
0.04

0.08
0.12

0.16 0
4

8
12

16
−10

0

10

0
0.04

0.08
0.12

0.16 0
4

8
12

16
−40

−20

0

0
0.04

0.08
0.12

0.16 0
4

8
12

16
−10

0

10

0
0.04

0.08
0.12

0.16 0
4

8
12

16
0

2

4

0
0.04

0.08
0.12

0.16 0
4

8
12

16
−4

−2

0

0
0.04

0.08
0.12

0.16 0
4

8
12

16
−10

0

10

0
0.04

0.08
0.12

0.16 0
4

8
12

16
−1

0

1

H
∗ 1

H
∗ 2

H
∗ 3

H
∗ 4

A
∗ 1

A
∗ 2

A
∗ 3

A
∗ 4

b∗/Bb∗/B

b∗/Bb∗/B

b∗/Bb∗/B

b∗/Bb∗/B

vrvr

vrvr

vrvr

vrvr
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Figure D.6: Sensitivity of flutter limit to section geometry: aerodynamic derivatives from
forced vibration simulations on Structure A with increasing central slot (b∗/B = 0−0.15,
B/D = 11.6) (cf. Figure 7.12).
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Figure D.7: Sensitivity of flutter limit to section geometry: aerodynamic derivatives
from forced vibration simulations on section with straight fairings (b = d = 0 − D/2)
(cf. Figure 7.14).
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Figure D.8: Sensitivity of flutter limit to section geometry: aerodynamic derivatives
from forced vibration simulations on section with curved fairings (r = 0 − D/2)
(cf. Figure 7.14).
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Figure D.9: Sensitivity of flutter limit to section geometry: aerodynamic derivatives from
forced vibration simulations on H-section with increasing depth (d∗/D = 0.04 − 1.00)
(cf. Figure 7.16).
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Figure D.10: Sensitivity of flutter limit to section geometry: aerodynamic derivatives
from forced vibration simulations on plate with increasing edges (d∗/D = 0.13 − 1.25)
(cf. Figure 7.16).
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Figure D.11: Sensitivity of flutter limit to section geometry: aerodynamic derivatives
from forced vibration simulations on H-shape with bottom plate (b∗/B = 0−0.15, B/D =
5) (cf. Figure 7.18).
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Figure D.12: Sensitivity of flutter limit to section geometry: aerodynamic derivatives
from forced vibration simulations on H-shape with fairing (b∗/B = 0 − 0.25, B/D = 5)
(cf. Figure 7.18).
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Figure D.13: Sensitivity of flutter limit to forcing amplitudes: aerodynamic derivatives
from forced vibration simulations on Structure A (cf. Figure 7.20).
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Figure D.14: Sensitivity of flutter limit to forcing amplitudes: aerodynamic derivatives
from forced vibration simulations on flat plate (aspect ratio 1:100) (cf. Figure 7.20).
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Appendix E

Probabilistic Assessment of Coupled
Models

E.1 Correlation Matrices

Section 8.3 discusses the correlation considered between different structural input
parameters and the aerodynamic derivatives. The following correlation matrices have
been used to generate correlated samples for sensitivity and uncertainty analyses.

E.1.1 Structural Parameters

The correlation was considered between structural parameters B − I, I − fα and fα − ξ.
These parameters were assumed correlated with ρ(Xi, Xj) = 0.0 to 0.5.

ρ(Xi, Xj) =




parameter B I fα ξ

B 1.0 0.5 0.0 0.0

I 0.5 1.0 0.5 0.0

fα 0.0 0.5 1.0 0.5

ξ 0.0 0.0 0.5 1.0


 (E.1)

E.1.2 Aerodynamic Derivatives

(a) Synthetic or artificial correlation introduced between all aerodynamic derivatives as

(i) no correlation ρ(Xi, Xj)=0.00

(ii) full correlation ρ(Xi, Xj)=0.99

(iii) partial correlation ρ(Xi, Xj)=0.50

ρ(Xi, Xj) =




derivative H∗1 H∗2 H∗3 H∗4 A∗1 A∗2 A∗3 A∗4

H∗1 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

H∗2 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5

H∗3 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5

H∗4 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5

A∗1 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5

A∗2 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5

A∗3 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5

A∗4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0




(E.2)
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E.1. Correlation Matrices

(b) Correlation for lift force aerodynamic derivatives H∗1 −H∗4 and H∗2 −H∗3
Correlation for moment aerodynamic derivatives A∗1 − A∗4 and A∗2 − A∗3

ρ(Xi, Xj) =




derivative H∗1 H∗2 H∗3 H∗4 A∗1 A∗2 A∗3 A∗4

H∗1 1.0 0.0 0.0 0.99 0.0 0.0 0.0 0.0

H∗2 0.0 1.0 0.99 0.0 0.0 0.0 0.0 0.0

H∗3 0.0 0.99 1.0 0.0 0.0 0.0 0.0 0.0

H∗4 0.99 0.0 0.0 1.0 0.0 0.0 0.0 0.0

A∗1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.99

A∗2 0.0 0.0 0.0 0.0 0.0 1.0 0.99 0.0

A∗3 0.0 0.0 0.0 0.0 0.0 0.99 1.0 0.0

A∗4 0.0 0.0 0.0 0.0 0.99 0.0 0.0 1.0




(E.3)

(c) Dependence of aerodynamic derivatives on each other

(i) since aerodynamic derivatives for flat plate are approximated as H∗1 = −K.H∗3
and A∗1 = −K.A∗3

ρ(Xi, Xj) =




derivative H∗1 H∗2 H∗3 H∗4 A∗1 A∗2 A∗3 A∗4

H∗1 1.0 0.0 0.99 0.0 0.0 0.0 0.0 0.0

H∗2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

H∗3 0.99 0.0 1.0 0.0 0.0 0.0 0.0 0.0

H∗4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

A∗1 0.0 0.0 0.0 0.0 1.0 0.0 0.99 0.0

A∗2 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

A∗3 0.0 0.0 0.0 0.0 0.99 0.0 1.0 0.0

A∗4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0




(E.4)

(ii) it is also interesting to see the correlation between H∗1 −H∗2 , H∗3 −H∗4 , A∗1−A∗2
and A∗3 − A∗4.

ρ(Xi, Xj) =




derivative H∗1 H∗2 H∗3 H∗4 A∗1 A∗2 A∗3 A∗4

H∗1 1.0 0.99 0.0 0.0 0.0 0.0 0.0 0.0

H∗2 0.99 1.0 0.0 0.0 0.0 0.0 0.0 0.0

H∗3 0.0 0.0 1.0 0.99 0.0 0.0 0.0 0.0

H∗4 0.0 0.0 0.99 1.0 0.99 0.0 0.0 0.0

A∗1 0.0 0.0 0.0 0.99 1.0 0.0 0.0 0.0

A∗2 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

A∗3 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.99

A∗4 0.0 0.0 0.0 0.0 0.0 0.0 0.99 1.0




(E.5)
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