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Abstract

Experimental and numerical models are required in order to reliably assess the safety and us-

ability of both newly constructed and existing structures. The quality of both numerical and

experimental models must be evaluated in order to reliably predict structural behaviour and

design. Many statements about the quality of a simulation model can only be validated by

including the appropriate experiments e.g. the quantification of the statistical uncertainties of

model input parameters during the calibration of the confidence level estimator model, which

is dependent heavily on the definition of the experiment and the quality of its implementation.

Metrological aspects should therefore be used in order to guarantee the equivalence of results

between different laboratories and evaluate the measurement or simulation result with its spec-

ifications. However, methodology for quantitatively assessing the implementation and results

of experimental models is lacking..

This work presents methods for assessing the quality of different materials used in struc-

tural engineering and monitoring models. Statistical models and methods of statistical inference

provide the technical machinery necessary to evaluate the properties of models including un-

certainty, sensitivity, reliability, robustness, and complexity. Furthermore, the quality of the

experimental models evaluated is based on these properties. The concepts of total uncertainty

and reliability are employed in order to rank the experimental models studied in order to de-

termine the properties of the materials. Some of these models and methods are illustrated by

(i) measuring the mechanical properties of structural steel using tensile testing, (ii) measuring

the properties of PCC concrete using compressive testing, (iii) measuring soil properties using

the triaxial test, and (iv) the monitoring models of concrete poles. The methodology presented

in this study provides the mathematical and computational tools required for quantifying the

quality and uncertainty of the experimental models. This can be used to improve measurement

processes and promote quality and capacity with respect to decision-making.





Zusammenfassung

Für eine zuverlässige Beurteilung der Sicherheit und Gebrauchstauglichkeit von neu zu errich-

tenden und bestehenden Strukturen sind experimentelle und numerische Modelle erforder-

lich. Die Qualitätsbewertung von numerischen und experimentellen Modellen ist heutzutage

zur zuverlässigen Vorhersage des Strukturverhaltens und in der Planung von Bauwerken un-

abkömmlich. Viele Aussagen über die Qualität eines Simulationsmodells lassen sich nur mit-

tels geeigneter Experimente treffen, wie beispielsweise die Quantifizierung von statistischen

Unsicherheiten in Modelleingangsparametern. Basierend auf der Modellkalibrierung mittels

Konfidenzniveausschätzung, sind diese allerdings stark abhängig von der Definition des Exper-

iments und der Qualität der Durchführung. Folglich wird der Einsatz messtechnischer Aspekte

notwendig, um die Gleichwertigkeit der Ergebnisse zwischen verschiedenen Laboratorien, als

auch der Auswertung von Messungen oder Simulationsergebnissen mit ihren jeweiligen Spezi-

fikationen, sicherzustellen. Es besteht derzeit jedoch noch ein Defizit an Methoden zur quanti-

tativen Beurteilung der Qualität der Ergebnisse von Versuchsmodellen und deren beispielhafter

Implementierung.

Daher werden in dieser Arbeit Methoden zur Qualitätsbeurteilung von experimentellen

Modellen für verschiedene Materialien im Konstruktiven Ingenieurbau präsentiert. Statistische

Modelle und Methoden der statistischen Inferenz bieten die technischen Möglichkeiten, Mod-

elleigenschaften, wie Unsicherheit, Sensitivität, Zuverlässigkeit, Robustheit und Komplexität,

zu bewerten. Darüber hinaus wird die Qualität der experimentellen Modelle aufgrund dieser

Modelleigenschaften bewertet. Die Konzepte der Gesamtunsicherheit und des Zuverlässigkeits-

index werden eingesetzt, um die experimentellen Modelle zur Bestimmung von Materialeigen-

schaften zu bewerten. Einige dieser Modelle und Verfahren werden in den folgenden vier

Beispielen näher erläutert: (i) Messung der mechanischen Eigenschaften von Baustahl mit-

tels Zugversuchs; (ii) Messung der Materialeigenschaften von PCC-Beton mittels Druckver-

suchs; (iii) Messung von Bodeneigenschaften mittels Triaxialversuchs; iv) Monitoringmodell

eines Betonmastes. Als Ergebnis der Studie kann festgestellt werden, dass die mathematischen

und algorithmischen Werkzeuge in der Lage sind, Modellunsicherheiten und die experimentelle

Modellqualität zu quantifizieren. Darüber hinaus ist es sinnvoll, Messverfahren zu verbessern,

um die Qualität und Kapazität der Entscheidungsfindung zu fördern.
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Chapter 1

Introduction

1.1 Background and Motivation

Experimental and mathematical/numerical models are required for the reliable assessment of

safety and usability in both newly constructed and existing structures. For this purpose, in

any engineering discipline – including structural engineering – current research entails the si-

multaneous development of models and implementation of experiments. Structural engineering

covers a broad spectrum of domains in which the experimental component often plays an im-

portant role. Computer simulation, which has become an important tool in the design of civil

engineering structures, utilises physical and mathematical models. This allows the structural

components to be designed to specification. However, simulation models are only approxima-

tions of reality; the models must be tested in practice. Numerical models must be validated with

experimental data. Research in this field is usually supported by a strong experimental infras-

tructure. Among other factors, quality depends on the accuracy of the measurements. Indeed,

many important decisions are based on measurement. For example, the results can be used

to assess the conformity of a product or to check a material against a specification/statutory

limit. Whenever decision is based on measurement, it is important to have an indication of the

quality of the results.

Experimental models (EM) are used for three main tasks:

• The validation of mathematical/numerical models;

• The determination of the necessary input parameters for mathematical/numerical models;

• The calibration of input parameters.

In model validation, experimental models are used to qualitatively and quantitatively com-

pare the results of experiments with simulated output. The result of the experiment often
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only takes aleatoric uncertainties into account [1, 2, 3, 4, 5]. However, epistemic uncertainties

in experiments should also be considered in order to evaluate the accuracy and reliability of

computational simulations in engineering design [6, 7, 8]. In many cases, a consistent and

quantitative evaluation of the uncertainties of experimental data or the experimental model

is not possible. Therefore, in the framework of the research training group, “Assessment of

Coupled Experimental and Numerical Partial Models in Structural Engineering (GRK 1462) –

Phase II”, the German Research Foundation (DFG) proposed a methodology that could quan-

titatively assess the quality of the experimental results and exemplary implementation.

The simulation of structural behaviour utilises the metrological results of different param-

eters such as length, mass, and mechanical properties. Other parameters such as geometry,

applied load, and environmental conditions are also estimated. Some input parameters of the

simulation model are defined based on the metrological results. Such magnitudes will have

a certain level of uncertainty. It is well known that an experiment is not perfect. In addi-

tion to experimental limitations, internal experiments are commonly affected by environmental

factors, form, and experimental technique. In order to obtain a reliable result, these effects

must be considered, and the limitations of the measuring system must be respected. In this

context, measurement is a complex process that entails physical and mathematical modelling,

instrumentation, the processing and validation of data, the evaluation of uncertainty, and the

analysis and interpretation of the results; all of these factors contribute accuracy.

Metrology, which is defined as the “science of measurement”, mainly focusses on provid-

ing measurements of reliability, credibility, universality, and quality. Measurements influence

(either directly or indirectly) virtually all decision-making processes. Measurement and metro-

logical operations account for an estimated 3–6% of the gross domestic product (GDP) of

industrialised countries [9, 10]. In addition to the identification, quantification, and propaga-

tion of metrological uncertainty, the incorporation of metrological aspects such as traceability

requirements and the knowledge of operating principles, limitations, and conditions is funda-

mental for any activity that utilises metrological results. The minimum standards specified for

testing machines are inadequate for accurately measuring modulus, and the standard tensile

test is not ideal for determining this property [11], as shown in Fig. 1.1. There is quite a large

variation in the measured values as well as clear differences between individual bars and EM,

Fig. 1.1.

In order to obtain reliable and consistent simulation results, it is necessary to identify, prop-

agate, and quantify the uncertainty of the input parameters in the computational simulation

models. This has been the focus of several recent studies [12, 13, 14, 15, 16, 17, 18]. However,

there has been no mention of the need to include metrological aspects for characterising the
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Figure 1.1: Comparison of output in experimental models to measured elastic modulus based

on [11]

stochastic behaviour of variables in the model. Within this context, it is therefore crucial to

incorporate metrological aspects when determining the uncertainty of the input parameters of

computer simulation model and to use techniques that incorporate these uncertainties into the

simulation model in order to: (i) ensure the reliability of the results, (ii) correctly evaluate

the results of the simulation, and (iii) correctly judge the results in relation to the experimen-

tal results, which are often used to validate or verify hypotheses/theories. The result of any

measurement is also influenced by uncertainty. According to the ‘Guide to the Expression of

Uncertainty in Measurement’ (GUM) [6, 7, 8], metrological results are simply an approxima-

tion or estimate of the value of the measurand. Uncertainty characterises the dispersion of the

values that could reasonably be attributed to the measurand. Consequently, the comparison

does not concern two mere numerical values but rather a value (limit or threshold) and an in-

terval of values (measure). High values of uncertainty cause wide intervals, thereby increasing

the probability of making poor decisions. The result of the comparison strongly depends on

the uncertainty of the measurement and can therefore not be disregarded. Underestimating

the effects of uncertainty may also lead to poor decisions. There are therefore specific require-

ments concerning the reliability of measurements. Reliable data cannot be guaranteed simply

by selecting the appropriate measurement system. Although the appropriate system should

minimise the uncertainty, the measurement must be correctly analysed. In practice, there are

many potential sources of metrological uncertainty. These include: (i) the incomplete defini-
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tion of the measurand, (ii) inadequate knowledge of the effects of environmental conditions,

(iii) the metrological method selected, and (iv) the measurement system used. Further infor-

mation about the metrological process is therefore necessary in order to qualify the reliability

of the decision. From this perspective, the appropriate decisional rules are required to compare

between metrological data and specifications.

Because of the aforementioned facts, the applicability of the various methods for calculating

uncertainty should be reviewed and verified in order to evaluate the assessment of experimen-

tal models in the field structural engineering. Despite the obvious need, the evaluation of the

quality of the global experimental model has not yet been investigated. A new method is thus

needed, especially for assessing the quality of experimental models in the field of civil engineer-

ing. This is partly because of the specifications of the models investigated, which require both

deterministic and probabilistic analyses. Furthermore, many engineering models cannot be used

to simulate physical reality because of the high experimental costs of the method required to

do so. The experimental model quality assessment (EMQA) method has been developed with

the aim of reducing the uncertainty and cost of experiments as well as increasing reliability and

robustness.

1.2 Objectives and Scope of the Study

This thesis is concerned with developing metrological accuracy as well as presenting the proce-

dures used to identify and quantify the influence of the uncertainty of the input parameters on

the results generated by computational simulation models. Focus is thus on the development

of a methodology for the qualitative and quantitative assessment of the quality of the EM in

civil engineering. In this regard, the objectives of the thesis are:

• Specify measurands, mathematically express the relation between measurand and input

quantities, identify significant sources of uncertainty, determine input quantities, quan-

tify the standard uncertainties of important single components, identify covariance, and

calculate the total uncertainty;

• Review of statistical models and methods of statistical inference that are currently rec-

ommended to evaluate measurement uncertainty and determine their applicability to civil

engineering research;

• Investigate and implement methods for determining the properties of the model (e.g.

sensitivity, robustness, and reliability);
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• Develop methods for quality of experimental models based on the total uncertainty and

reliability of the predicted output;

• Develop examples that illustrate how to assess the quality of experimental models for

the tensile testing of steel, the compressive testing of polymer modified concrete and

geotechnical testing (triaxial testing) using the proposed procedures, formats, and models;

• Propose a new concept and verify the adequacy of the existing probabilistic models of

sample geometry and mechanical properties that can be used in assessing the probability

based reliability of structures;

• Investigate the effects of measurement uncertainty on monitoring data and the monitoring

model of concrete poles.

1.3 Limitations and Shortcomings of the Thesis

The present thesis focuses on developing methods for assessing the predicted quality of exper-

imental models. To apply the proposed framework in the evaluation of the quality of experi-

mental models, certain assumptions have to be made. However, these assumptions could lead

to the following limitations and shortcomings:

• For Measurement uncertainty, the recommended estimation of error has been adopted in

the proposed framework. However, the source of measurement uncertainty can also be

classified into various categories. Measurement uncertainty should be further examined

and formulated in detail;

• When applying the statistically valid likelihood function, transformed data are still not

entirely normally distributed, independent, or correlated. Although robustness, reliabil-

ity, validity, repeatability, and reproducibility have been investigated, these parameters

should be further examined in order to assess the experimental model. The method

developed to evaluate quality is verified using a reference model. For this purpose, exper-

imental and monitoring models with defined boundary conditions are used as practical

examples. Complex physical models are required for complex structures. However, such

investigations have not been included in this thesis because of time limitations and the

high cost of the associated studies;

• The scatter of material properties was determined for the interlaboratory comparison.

However, even the best-administered interlaboratory testing has practical and experi-

mental limitations. Several complications arose while analysing the tensile test data.
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In some tests, the closed loop control mode was not sufficiently optimised, the software

was complicated, or the wrong software options were unintentionally used. These factors

have all led to unexpected results and errors. Because of missing data, the actual testing

speeds cannot be checked. Because of time limitations, the proposed methodology was

not applied for synthetic, glass, or composite construction materials.

1.4 Outline of the Thesis

The thesis is organised in seven chapters and two appendices.

Chapter 1 includes a brief introduction pertaining to the background and objectives of the

thesis.

Chapter 2 is a literature review pertaining to: (i) evaluation methods for physical models, (ii)

the evaluation of experimental models, and (iii) the inter-laboratory evaluation of the quality

of experimental data. This chapter discusses the historical background of the analysis of phys-

ical model as well as the similitude principles that govern the testing and interpretation of the

quality of models.

Chapter 3 presents a stochastic description of the quality of physical models. Stochastic proper-

ties such as uncertainty were determined using the GUM, Bayesian, and Monte Carlo methods,

local and global sensitivity analyses (SA), and reliability analyses. The robustness, complexity,

and cost factor of experiments were also compared between laboratories.

Chapter 4 presents novel methodology for assessing the quality of experimental models. The

methodology developed to assess quality is based on total uncertainty, the sensitivity index,

the reliability index, experimental design, and experimental costs. The evaluation criteria have

a significant influence on the rank of the experimental model quality. This chapter also de-

scribes the criteria, statistical approaches, and possibilities for weighting the experimental and

monitoring models. Finally, the experimental model quality methods are developed, based on

different weighting factors.

Chapter 5 describe the application of experimental models in civil engineering examples. These

include (i) the tensile testing of steel, (ii) the compressive testing of polymer-modified concrete,

(iii) the triaxial testing of soil, (iv) and the inter-laboratory comparison of experiments. This

chapter provides a compressive overview of the relevant statistical characteristics of these pa-

rameters with respect to analysing the quality of physical models in civil engineering.

Chapter 6 discusses the application of proposed methods in a model for monitoring concrete

poles. This chapter introduces an approach for analysing the quality of strain metrological data,

which utilises monitoring data and the associated metrological uncertainties. A new approach
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for determining metrological uncertainties based on Bayesian updating is also proposed. One

example of strain measurement in concrete pole is presented along with the measured reference

values of strain measurement.

Chapter 7 presents the conclusions of the present research work and discusses recommendations

for future research.





Chapter 2

The State of the Art

This study is concerned with assessing experimental models taking into consideration the dif-

ferent partial models (PM) of experiments. The methods of assessment require an objectives

response. Focus has therefore been placed on the assessment and analysis of experimental mod-

els. The following sections thus present a brief review of the classification of the model and the

concept of general assessment as it pertains to experimental modelling.

2.1 Definition and Evaluation of the Models

2.1.1 Definition of the Models

It is first necessary to design a logical model to analyse a real event. It must then be decided

whether the further analysis should be performed using mathematical/numerical or experimen-

tal methods. In the first case, the logical model must be described by an advanced “mathemat-

ical model” or simplified heuristic mathematical model, which should be based on advanced

theoretical perceptions. However, assumptions and suppositions should be investigated using

numerical methods such as the Finite Element Method (FEM), Boundary Element Method

(BEM), or Finite Difference Method (FDM). However, this only provides an approximation

of reality. The reliability of such results is often unknown or difficult to estimate unless it is

proven in practice i.e. via measurement. This results in a logical model [19, 20, 21], Fig. 2.1.

Real events can be much more realistically modelled using “physical model”, which might

be the real objects themselves, prototypes of products and structures, or scaled-down replicas.

The ACI Committee 444 [22] defines a structural/physical model as:

Any physical representation of a structure or a portion of a structure. Most commonly, the

model will be constructed at a reduced scale.

Generally speaking, physical modelling, especially prototypes, is considered to be costly, time-
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Figure 2.1: Evaluating the quality of modelling

consuming, and sometimes too risky. Physical models therefore require more care than computer-

simulation models. In contrast, computer-simulation models should be proven with respect to

reality. It is necessary to introduce empirical results and multiple datasets, which are obtained

by performing experiments. Experimental investigation entails performing real-world simula-

tions on prototypes. For example, the robust design of experiments or the “Taguchi robustness

design” [23] can be utilised to help establish the test and measurement, select the optimal

type, number, and location of sensors, and determine the best location for excitation devices

for model tests.

When developing experimental methods, it is important to note that while increasing the

resolution of equipment and measuring systems can improve the quality of the output, it also

rapidly increases the amount of data that must be analysed. A powerful computer is thus

required to control the metrological system and the process itself as well as to acquire and eval-

uate data. In modern experimental analysis, proper theories as well as advanced mathematical
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models of the experimental methods and the event to be investigated must be introduced. In

the context of the research training group, “Assessment of Coupled Experimental and Numer-

ical Partial Models in Structural Engineering (GRK 1462)” the German Research Foundation

(DFG) has further investigated and developed methodology to evaluate experimental models

and hybrid experimental and mathematical/numerical models. Different steps of combining

mathematical/numerical and experimental procedures in analysing mechanical problems are

possible as shown in Fig. 2.1. The detailed methodology has been discussed by Scheiber et

al. [16]. These steps depend on various conditions such as the research question itself, the

purpose and objectives of the investigation, the required accuracy, the availability of experi-

mental equipment, the processing capacity of the computer capacity, and the expertise of the

investigator [24].

Experimental investigation is a valuable technique for gaining an increased understanding

of material response and structural performance. Indeed, structural testing is particularly in-

dispensable when the numerous uncertainties in material behaviour, structural geometry, and

boundary conditions provide a reliable numerical simulation of how structural elements respond

[25].

2.1.2 Evaluation Methods for Physical Model

Many statements about the quality of a simulation model can only validated by including the

appropriate experiments e.g. the quantification of the statistical uncertainties of model input

parameters while calibrating the confidence level of the model [26, 27]. This strongly depends on

the definition of the experiment and the quality of its implementation. Research is thus focused

on developing methods to quantitatively assess the quality of experimental models and their

exemplary implementation in the field of structural engineering. As a result, more engineers

will recognise that measurement is relevant in making decisions about the quality of output

and services and that information about metrological results are rarely complete. Confidence

in measurement is therefore only possible if the measurement uncertainty is quantitatively and

reliably assessed.

When comparing model simulations and experiments, the influence of experimental uncer-

tainty is considered. Experimental uncertainty can be expressed in two ways. The first is the

uncertainty associated with parameters derived from experimental measurements that are used

as model input ( model input uncertainty). The second is the uncertainty associated with the

experimental measurements themselves ( measurement uncertainty). The optimal complexity

of the model highly depends on the size and quality of the data (Fig. 2.2). For datasets that

are noisy and limited in size, a simple model is needed to prevent the increased prediction error
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that can result from an overly complex model.

 

Figure 2.2: Scheme for the size-and quality-dependent uncertainty of prediction, which influ-

ences the estimation uncertainty

A method of calculating the overall measurement uncertainty for any type of measurement

has only recently been developed. Conventional uncertainty analysis via the root sum square

(RSS) method often proves difficult in complex systems and requires approximation at each

stage of processing, thereby placing serious doubts on the validity of the results. In accordance

with the calibration and testing guide ISO/IEC 17025:1999 [28], all calibration or testing labo-

ratories must apply procedures to evaluate uncertainty in measurement as a guarantee of their

technical competence. In order to perform this evaluation, the GUM [6] has been widely used

and accepted by the metrological accreditation organisation. Various supplements to the GUM

are being developed, which will be progressively put into effect. In the first of these supplements

(GUM S1 and S2) [7, 8], an alternative procedure is described for the calculation of uncertain-

ties: the Monte Carlo Method (MCM) and an extension to any number of output quantities.

These include non-symmetric measurement uncertainty distributions, non-linearity within the

metrological system, input dependency, and systematic bias. The main elements of the for-

malism were originally proposed by Weise and Elster [29]. Later, the procedure was succinctly

outlined by Elster et al. [30] and focused on its relation to the MCM as described by the Joint

Committee for Guides in Metrology (JCGM) [7]. Wübbeler et al. [31] explained similarities

and differences between the approaches of the GUM and GUM S1. Many recent papers have

applied a Bayesian updating to evaluate metrological uncertainty e.g. [29, 32, 33, 34, 35, 36],

and several books [37, 38, 39] also discuss issues relevant to this general evaluation method. The

approach introduces a state of knowledge distribution about the quantity on interest, which is
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derived from information about the quantity as well as other influences of quantity and mea-

sured data using probabilistic inversion or the inverse evaluation of uncertainty.

Uncertainty characterises the dispersion of the values that could reasonably be attributed

to the measurand. Consequently, the comparison does not concern two more numerical values

but rather a value (limit or threshold) and an interval of values (measure). High values of

uncertainty cause wide intervals. The probability of making a poor decision is thus higher. The

result of the comparison strongly depends on the metrological uncertainty and can therefore

not be disregarded.

Sensitivity analysis is an important part of metrology, particularly for the evaluation of

metrological uncertainties. For example, in experiments, it is interesting to find influence

quantities with a high potential for reducing metrological uncertainty. Hence, a measure for

the importance of influence quantities or part of an experimental model according to mea-

surement uncertainty is highly relevant. A tool known as local sensitivity analysis has been

developed [6]. JCGM [7, 8], which deals with MCM, provides a similar sensitivity index known

as ‘One at a time’ (OAT). Another method is to apply variance analysis that uses properties

and capabilities of the MCM e.g. using Sobol’ sensitivity indices [40, 41, 42, 43]. Other sensi-

tivity indices have been developed but have not yet been used in metrology.

A further quality measure derived from metrological uncertainty is reliability. In the 1970s

and 1980s, heuristic evaluation procedures derived from the field of medicine were used to assess

the reliability of metrological data [44]. However, this approach is not applicable for evaluating

experimental models in engineering. The reliability of metrological data has been discussed

[45, 46], although the fact remains that reliability also depends on the amount of metrological

data and calibration of instrument and not just on the metrological uncertainty of the measure-

ment method. With respect to the assessment of quality, the reliability of metrological results

refers to the concept of metrological traceability and the associated metrological uncertainty

(measurement uncertainty).

The reliability parameter is also known as a hypothesis test for bias e.g. paired t-test, anal-

ysis of variance, interclass correlation (ICC), standard error of measurement (SEM), coefficient

of variance (CV), repeatability coefficient, or Bland and Altman 95% limits of agreement [47],

which are normally used to compare metrological methods. The reliability of experimental

models is expressed as a value between zero and one. A value of one corresponds to zero mea-

surement uncertainty, and a value of zero corresponds to zero meaning. As a dimensionless

quantity, it is arguably quite difficult to interpret and decide which value is sufficiently reliable

for assessing quality [48].

Robustness methodology is intended as a cost-effective approach for improving the quality
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of experiments, products, and system [23]. Designing robust parameters involves choosing the

optimal level of the controllable factor in order to obtain a target or optimal response with

minimum variation. Robustness entails adjusting the levels of control factors so that the vari-

ability is reduced and the reliability of the measurement is increased.

If the amount of data increases, the standard uncertainty of an experimental model de-

creases. However, the cumulative uncertainty of the data will increase. Hence, the final uncer-

tainty of the measurement, which is the amount of standard uncertainty and systematic and

random deviation, does not monotonically decrease. Consequently, for each dataset, the opti-

mal complexity of the model must be found, whereby the complexity of the models is directly

related with the number of variables utilized by the model, which is shown in Fig. 2.2. In the

field of experimentation, it is extremely difficult to determine the optimal models.

A popular strategy in structural engineering is to combine several statistical terms that

cover different aspects of experimental models. The combined terms have been shown to out-

perform any single term. EMQA programmes are used to assess models generated by various

methods, and the quality of the models range from coarse models, which often have the incor-

rect magnitude, to highly-accurate models [14, 15, 16]. Assessment functions that consist of

several model properties and that are optimised on a diverse set of models will therefore be

more suitable for the task of discriminating between good and bad models.

2.2 Physical Models in Structural Engineering

2.2.1 Introduction

In the early to mid 20th century, engineering research and education relied heavily on the use

of physical models and experiments to reinforce various topics [49, 50]. Physical models (and

reduced-scale structures sometimes called replica models) have always played a significant role

in research, design, and education. Experiments on reduced-scale structures and specimens

have always been important in civil engineering research. Various problems are encountered

in the planning, implementation, and interpretation of experimental studies of structural be-

haviour. Each of these areas ranges from theoretical similitude requirements to the rather

extensive discipline of experimental stress analysis. Small-scale physical models have been used

to determine the most efficient form of pure compression and tensile structures since the 17th

century and to predict the structural behaviour of some full-sized structures since the mid-19th

century [51].
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2.2.2 Physical Models – Definitions and Classification

The term “physical model” invokes different images for different people, depending on personal

experience. Providing a precise and all-encompassing definition of physical modelling therefore

becomes a difficult task. To some, the term physical model might be limited to small-scale

reproduction of prototypical situations of structures. One definition of physical model as it

applies to structural engineering is discussed in section 2.1.1. A variety of structures may be

modelled, including bridges, dams, and towers as well as structures designed for aerospace and

underwater. A structural model can also be defined as any structural element or assembly of

structural elements built to a reduced scale (in comparison with full-sized structures) which is

to be tested, and for which laws of similitude must be employed to interpret test results [52].

Applied forces may represent static, seismic, thermal, and aeolian loads. Depending on the

function of a model, it can be classified into one of several widely accepted groups. The

following discussion gives an overview of some of the most popular classes of models but does

not necessary include all classes [51].

As the name indicates, elastic models: are specifically used to test behaviour in the elastic

range of the material. The geometry of the model and prototype are similar. The material does

not necessarily resemble the prototype, but it should be homogeneous. Elastic models using a

low modulus of elastic materials are particularly useful for illustrating structural behaviour.

Plastic models: in the case of plastic models, a structure can be designed to form a pre-

selected yield mechanism at ultimate load level leading to a known and predetermined response

during extreme events. This has special significance in the context of performance-based design

philosophy, whereby it is essential for the structure to deform in a preselected manner in order

to achieve the desired levels of performance. Plasticity ends in the failure of material.

Indirect Models: are used to determine the influence diagrams for reaction and internal

shear, bending, and axial force. Loads applied to the model do not correspondence to the

actual loads expected in real life. Furthermore, there is no need for physical resemblance

between the model and prototype. However, if the behaviour is controlled by the quantity,

properties such as flexural stiffness should correspond.

Direct Models: are similar to the prototype in terms of both load and symmetry. Therefore,

for the prototype, strain and other measurable quantities will be representative for the given

load application. Elastic models can also be direct models.

Strength models:, which are also referred to as ultimate strength or realistic models, are

direct models made of materials similar to the prototype materials. These models will thus

predict prototype behaviour for all loads up to failure. Modelling the behaviour up to the point
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of failure is clearly an advantage, but finding the proper materials and fabrication techniques

for the models can be problematic.

Wind Effect Models: are further classified into shape/rigid and aero-elastic categories. The

shape and rigid models are used to measure the forces or wind pressures at various points on

the structure. Aero-elastic models, on the other hand, use shape and stiffness properties of

the prototype so that wind-induced stresses, deformations, and dynamic interaction can be

measured using the model.

Dynamic Models: are used to study vibration or dynamic loading effects on structures. One

popular method for seismic simulation is the use of shake tables. Dynamic models can also be

used to study internal or external blast effects as well as the effects of impact on structures.

2.2.3 Physical Models History

Since the late 17th century, hanging models (and, since the 1950s, other tensile models) have

been used to establish a variable structural form or demonstrate that a certain form is vari-

able. Since the 1930s, scale models have been used to predict stresses, moments, deformations,

collapse loads, and safety factors for full-sized structures – especially thin-shelled, reinforced

concrete structures – as a means of corroborating predicted quantities using structural calcu-

lations.

Small-scale models date back hundreds and even thousands of years. The earliest models

were much different from current ones; they were used primarily for planning and constructing

[22, 51]. In fact, they can be compared to current architectural models. These early models are

not comparable to current structural models because strain, displacement, and force had not

been measurable quantities at that time. Some of the earliest examples of structural modelling

include the Hoover Dam, which was built in 1930, as well as the other large dams of that era,

which were built by the Bureau of Reclamation, Denver, CO [51].

Harris and Sabnis [51] explain the comprehensive overview of structural modelling and list

the following specific examples, which are suitable for structural modelling studies in the design

phase.

2.2.4 Physical Modelling Process

A physical model must be created by a physical modelling. The detailed planning of an experi-

ment is even more essential than planning an analytical approach because it is usually impossible

to refine a physical model halfway through the modelling process. A typical physical modelling

process can be broken into the following steps:



2.2. Physical Models in Structural Engineering 17

• Definition of the scope of the problem i.e. deciding what is and is not required from the

model;

• Specification of the similitude requirements for geometry, materials, or loading;

• Decision on the size of the model as well as the required level of reliability or accuracy;

• Selection of materials;

• Planning of the fabrication;

• Selection of instruments and recording equipment;

• Observation of the response of the model during loading;

• Analysis of the data.

Physical modelling includes simplifications concerning the structural properties and actions

adopted in the behavioural model. The resulting physical model will be subjected to structural

analysis using experimental methods.

2.2.5 Experimental Activity: Measurement and Traceability

The experimental activity has a relevant role in the structural engineering research, being used

for modelling physical conditions and to test solutions in order to validate scientific approaches.

The measurement of quantities plays a relevant and central role in this activity, where it is ex-

pected that they are quantified in a rigorous way, obeying to the required accuracy and being

traceable to International System of Units (SI) standards defined by the standards of the GUM

[6, 7, 8, 28].

Considering the correctness of the functional relations applied, the critical steps to mea-

surement quality are strongly related with the following tasks:

• Identification of the measurands : this task is relevant because it provides an interface

between mathematical modelling and physical modelling; in some cases, because of the

complex nature of some quantities, multi-stage indirect measurements must be provided;

• Selection of scientific instrumentation with the required level of accuracy : this task can be

critical when the measurement requirements are near instrumentation resolution, when

there is a random dynamic behaviour of the system or when influence quantities signifi-

cantly affect the measurements;
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• Calibration of instrumentation: in some cases, calibration could be a problem because of

the difficulty to define reference conditions or standards in order to provide the connection

to the SI traceability framework;

• Calculation of correction curves : the development of mathematical algorithms in order to

correct calibration deviations can be complex when dealing with multivariable systems;

• Evaluation of measurement uncertainty : the measurement process can occur in different

frameworks, being obtained under static or dynamic conditions, being described on com-

plex scalar or matrix basis, having non-linear functional relations, among others, which

may be not compatible with the requirements of conventional methods used to evaluate

measurement uncertainty [6, 7, 8, 28].

2.2.6 Advantages and Limitations of Physical Model Analysis

The main advantage of physical models over analytical models is their behaviour can be com-

pletely characterized to the point of failure. Although great advances have been made in

computer analysis programs, it remains difficult, if not impossible, to predict the failure capac-

ity of three-dimensional structures under complex loads.

Cost is an ever-relevant issue for modelling and experimental studies. Scaled models provide

savings on materials, labour, sensors, preparation, disposal, facilities, and laboratory equip-

ment. A good example of cost savings is demonstrated by the fact that a concentrated load is

reduced in proportion to the square of the geometric scale factor of the model.

However, despite the cost savings and behavioural advantages of using physical models,

they cannot be particularly well applied to typical design environments. Analytical models

are typically less expensive and faster. Physical models are therefore more suitable for cases

in which analytical models are neither adequate nor feasible. Research institutes and facilities

commonly implement physical models. For this thesis, the most relevant research application

is the development of experimental data to verify the adequacy of the proposed analytical

methods. This will be expanded upon in later sections.

2.3 Quality Assessment of Experimental Models

In sections 2.1.1 and 2.1.2, it was stated that uncertainty can be regarded as a quantitative

indication of the quality of the measurement. In general, measurement uncertainty comprises

many components. Some of these components may be evaluated from the statistical distribution

of the results of a series of measurements and can be characterised by experimental standard
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deviations. The other components, which can also be characterized by standard deviations, are

evaluated from assumed probability distributions based on experience or other information [53].

It is clear that the result of the measurement is the best estimate of the value of the measurand

and that all components of uncertainty, including those arising from systematic effects such

as components associated with corrections and reference standards, contribute to dispersion

[6, 7, 8, 28]. Uncertainty can be estimated in one of two ways:

• Type A uncertainty estimates are obtained by the statistical analysis of data – for exam-

ple, repeatability may be estimated as the standard deviation of a set of replicates;

• Type B uncertainty estimates are obtained by other means, such as finding the uncertainty

of a calibration result on a calibration certificate or the uncertainty in the value of a

reference material from the material certification. In some cases, uncertainty estimates

can be based on one’s knowledge and experience, on the laws of physics or from knowledge

about how an instrument behaves.

Measurement uncertainty can be evaluated within the framework of the conventional theory of

statistics [54] e.g. least squares, maximum likelihood, and bootstrap as well as Bayesian statis-

tical theory. Both types of statistics take considerably different approaches to the concept of

probability. In statistics, the conventional concept of probability is associated with the relative

frequency of random events. In the case of systematic effects, non-linear measurement models,

and values measured close to detection limits, such statistics fail [55, 56]. An example of incon-

sistencies occurring in conventional statistics can also be the guide, which has introduced two

different methods of evaluating uncertainty (Type A and Type B) [6]. Similarly, the Bayesian

approach and MCM treat random and systematic effects in the same way. In this thesis, the

three aforementioned methods for determining uncertainty will be implemented using examples

from civil engineering. The experimental models are classified as the intra-laboratory approach

(based on a distinction between the evaluation of uncertainty carried out by the laboratory it-

self) and the inter-laboratory approach (uncertainty evaluation based on collaborative studies).

These approaches have been presented in the guidelines on the expression of uncertainty in

quantitative testing [57]. Finally, the quality of different experimental models is defined based

on the measurement uncertainty.

In such a context, the uncertainty budget associated with the evaluation of measurement

uncertainty is useful for gaining a better knowledge of measurement process through the con-

tributions to the variance of output quantity of each input quantity. Within the framework

of the GUM, the partial derivatives of the measurement mode that are computed are the best

estimate of each input quantity. This concept of sensitivity analysis is used in the GUM. In
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contrast, the global sensitivity analysis is used in the Bayesian and MCM framework [7, 8].

On the other hand, the reliability of the experimental model is inversely proportional to the

measurement uncertainty. If reliability is high, measurement uncertainty is small. The CV and

reliability index (β) are used for quantifying the quality of the experimental model.

The experimental model used to perform the experimental tests need to certify the trace-

ability as well as estimate the levels of measurement uncertainty. Experimental activities are

important and necessary for comparing results between experimental models designed for sci-

entific and technological purposes. Thus, the results obtained by different experimental models

can only be used objectively if the measurement results are traceable and the experimen-

tal models have assessed the respective measurement uncertainty and conformity assessment.

Conformity can be made on a quantitative basis- referred in statistical acceptance sampling by

variable.

2.4 Quality Assessment of Monitoring Models

For quality assurance of measurement results, the evaluation of measurement performance is es-

pecially important because measurement results depend on both the measurement method and

measurement model. Mathematical/numerical model parameters are usually estimated through

minimization algorithms with respect to experimental data. However, the values obtained in

the classical minimisation approach are not always correct and require critical evaluation where

the minimum of the cost function is attained [58]. Monitoring is a key factor in the reliable and

safe design of structure, while the term monitoring results involve some level of uncertainty may

originate from causes such as the lack of accuracy in measurement equipment, random variation

in the measurands, approximations in data reduction relations, observation, and supervision of

an activity or a process [59, 60, 61]. Those uncertainties can be caused by either systematic or

random deviations in the measurement. All of these individual deviations influence the result.

For this purpose, a typical example of a monitoring model for uncertainties quantification was

used. These will be discussed in chapter 6. The measurement uncertainty based on measure-

ment process, observation equation, and the Bayesian method was determined. The approach

introduced in this section utilizes both types (systematic and random) for the derivation of a

posterior measurement uncertainty by Bayesian updating [35]. This facilitates the quantifica-

tion of a measurement uncertainty using all available data of the measurement process. The

measurement uncertainty models derived in this monitoring model are analysed with a sensi-

tivity study and discussed in detail resulting in the identification of the most relevant sources

of measurement uncertainty.
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From this application example, an engineer can easily understand how the reliability of the

estimated parameter increases with increasing quality of data and decreasing data measure-

ment uncertainty. The quality of monitoring models is evaluated based on the metrological

uncertainties. Measurement uncertainty arises from calculating the covariance matrix for the

measurement uncertainty. This is because increasing the number of independent measurement

devices does not steadily decrease the measurement uncertainty as shown in Fig. 2.2. The

analysis of uncertainty is a vital part of any monitoring models or experimental programme.





Chapter 3

Stochastic Description of Physical

Model Quality

3.1 Introduction

Civil engineering encompasses a wide and diverse range of domains, each one dealing with

specific issues in which the experimental and monitoring components often play an important

role. In recent years, rapid changes have been made in materials technology. Worldwide, sub-

stantial investment will continue to be made in the development, processing, and application

of materials. The use of modern materials pervades all of industry and strongly influences

competitiveness. However, to convert these materials into competitive engineering products,

the designer requires access to appropriate design methodologies that specify material property

requirements. The need to generate reliable design data therefore becomes crucial. Further-

more, the quantitative assessment of the behaviour and performance of materials is essential to

the quality and reliability of products. The measurements of materials have an important and

widespread influence [62, 63, 64]. This chapter presents studies on the stochastic description of

the quality of physical model, taking into consideration different physical properties.

3.1.1 Metrology Contribution to Measurement Quality

It is widely accepted today that metrology is one of the pillar that hold quality. Measurement

accuracy achieved, by this way, a relevant role in the quality. The quality of an experiment

may need to be assessed for various reasons, one of which is finding is the best combination of

inputs for experiments. Another is to ensure metrological quality. A metrological–probabilistic

approach can provide valuable mathematical and computational tools that are especially well

suited to the study, evaluation, and improvement of measurement various components (e.g.
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modelling, instrumentation performance, data processing, data validation, and traceability)

of metrological processes. Emphasis is placed on evaluating the quality of measurements in

order to analyse results and promote the quality and capacity associated with decision-making

[65]. The evaluation of quality evaluation based on analyses of uncertainty, sensitivity, and

reliability are important because they can be generically applied. Such procedures are employed

to quantify the uncertainty, propagation of uncertainty, rank of input parameters and reliability

of data in order to identify the main contributors to the uncertainties of the measurement models

quality evaluation as well as to identify priorities for further investigation and use.

3.1.2 Characterization of Errors and Uncertainties

Measurement error is described as the difference between a measurement and the true value of

the measurand (the quantity being measured) [66]. Error does not include mistake. In turn,

a true value is defined as a value that is consistent with the definition of the measurand. The

uncertainty of a measurement is the range of the measured value in which the true value or the

conventional true value of the measured quantity is likely to lie at the stated level of confidence

[67]. The characterisation of uncertainty is not trivial; it entails developing methods to model

both random and systematic uncertainty [68, 69]. Regardless of the type being considered,

the characterisation of uncertainty depends on data to provide the insight needed to define a

stochastic model of the appropriate behaviour of the measurement/simulation of the parameter

[70].

3.2 Uncertainty Analysis

The uncertainty of direct physical measurements is a well-accepted concept in engineering. In

simple terms, it is a representation of the likely values of the metrological results. The concept

of uncertainty is sometimes confused with the concept of error. Error refers to the difference

between the measurand (i.e. the true value of the quantity to be measured) and the metrolog-

ical result. A measurement can be close to the unknown value of the measurand, thus yielding

negligible error; however, it may have a large uncertainty. Because the exact value of a measur-

and can never be evaluated, error is an abstract concept and can never be quantified. However,

uncertainty is a measure that can – and should – be quantified for every measurement. It

is not a mere repeatability, but it is at least as high as the intra-laboratory reproducibility.

If it is an attribute of a general analytical test, it is at least as high as the inter-laboratory

reproducibility. Measurement uncertainty can be determined by the addition of the variances

of the individual step of the test procedure or by an approach which starts with one of the
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above-mentioned reproducibilities. Any measurement uncertainty should be kept low but it is

objectionable to state to low a value, e.g. by falsely reporting mere repeatability data instead

of properly determined uncertainty data.

The probabilistic presentation of uncertainties in direct measurements is formalized by In-

ternational Organization for Standardization (ISO, GUM) and United States National Institute

of Standards and Technology (NIST) [71, 72]. The GUM provides generals guides for the eval-

uation and expression of measurement uncertainty for a range of measurement process [67].

The measured value (MV) expresses exactly what we can determine safely on the value of the

measurand, based on the application of the measurement system (SM). It consists of two parts:

• The base result (BR), which corresponds to the central value of the range which shall be

within the true value of the measured;

• The measurement uncertainty (MU), which expresses the range of doubt still present in

MV caused by errors contained in the SM and/or variations of the measurand, and should

always be accompanied by measuring unit. Thus, the MV must always be expressed as:

MV = BR±MU [unit]. (3.1)

When analysing uncertainty, the measurand should be clearly specified. Although this may

seem trivial, it is nevertheless essential [73, 74]. Without clearly understanding the purpose of

the measurement and the factors that influence the results, it is impossible to reliably estimate

the measurement uncertainty. The evaluation of the measurement uncertainty is therefore not

purely a mathematical task; it depends on the measuring system and environment as well as

other metrological factors such as critical thinking and skill.

According to the recommendations of ISO and the NIST, measurement uncertainties should

be expressed explicitly when presenting the results of measurements using probabilistic con-

cepts. This is the first step towards implementing the probabilistic approach to solve problems,

whereby the direct physical measurements are one of the inputs to the problem. The particular

statistical paradigms under which different methods for uncertainty assessment are described

include the framework of the GUM as well as the Bayesian and Monte Carlo method, which

are discussed in further sections.

3.2.1 The Guide to the Expression of Uncertainty in Measurement

(GUM)

The most widely used and accepted method for evaluating uncertainty evaluation is the GUM

[6, 7]. The GUM characterises quantities using either a normal (Gaussian) or t-distribution,
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which allows measurement uncertainty to be delimited by means of a coverage interval. The

GUM approach has two main drawbacks. First, linearisation of the GUM model can lead to an

inadequate representation of a system. Second, the probability density function (PDF) for the

output quantity can appreciably deviate from a Gaussian or t-distribution. In the first case,

the estimate of the output quantity and the associated standard uncertainty provided by the

GUM might be unreliable. In the second case, unrealistic coverage intervals can be created.

3.2.1.1 Sources of Measurement Uncertainty

According to the GUM, in practice, there are many possible sources of uncertainty in a mea-

surement, including:

• The incomplete definition of the measurand;

• An imperfectly defined measurand;

• A non-representative sample ( measured sample size may not represent the measurand);

• An inadequate knowledge of the effects of environmental conditions on the measurement

or imperfect measurement of environmental conditions;

• Personal bias error in reading analogue instruments;

• The resolution of the instrument or discrimination threshold;

• Inaccuracies of measurement standard and reference material values;

• Inexact values of constants and other parameters obtained from external sources and used

in data reduction algorithm;

• Approaches incorporated into the method and measurement assumptions;

• Identical variation in repeated observations of the measurand under apparently identical

conditions.

Fig. 3.1 graphically presents the main sources of uncertainty acting in a measurement process.

3.2.1.2 Modelling of Measurement Uncertainty

For evaluating the measurement uncertainty, it is necessary to mathematically describe both

the measurement processes as well as all quantities and parameters influencing the measuring
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Figure 3.1: Sources of uncertainty acting on the measurement

system [6, 7, 8]. If all quantities influencing the result of measurement can be varied, the mea-

surement uncertainty can be evaluated by statistical treatment of experimental data. However,

this is rarely possible in practice because of the time and financial costs involved in the exhaus-

tive task of experimentally evaluating the uncertainty. There are several ways of quantifying

the different types of measurement uncertainty [6, 7, 75] as is shown in Fig. 3.2 and Fig. 3.3.

In the GUM, a measurement system is modelled, the input quantities, N , say, in number, are

denoted by X = (X1, X2, ...XN)T and the output quantity by Y . The measurement model:

Y = f(X) = f(X1, X2, ...XN). (3.2)

In most cases, f(X1, X2, ...XN) will be an analytical expression, but there may be cases in

which it is described by a group of expressions that include correction factors for systematic

effects. This leads to a more complex equation that can either be determined experimentally

or that exists only as a computation algorithm, which has to be evaluated numerically, or a

combination of the above cases. An estimate of the output Y parameter, denoted as y, is

obtained from Eq. 3.2 using input estimates x1, x2, ...xN for the values of N input quantities

X1, X2, ...XN . Thus, the output estimate y, which is the result of the measurement, is given

by:

y = f(X) = f(x1, x2, ...xN). (3.3)

The estimated standard deviation associated with the estimate of output or outcome y

simulation called combined and designated uncertainty µ(y) is determined by the estimated

standard deviation associated with each input estimate xi and designated standard uncertainty

µ(xi). Each input estimate xi and associated standard uncertainty µ(xi) is obtained from a

distribution of possible values of the input variable Xi. This distribution of likelihood can be
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Figure 3.2: The general method to evaluate measurement uncertainty based on [6, 7]

based on the frequency i.e. in a series of observations Xi,k, of Xi or may be a scientific judgment

based distribution, using all relevant information that is available [6, 7]. Fig. 3.3 summaries the

ISO GUM procedure.

3.2.1.3 Quantifying the Contribution of the Sources of Uncertainty

The measurement uncertainty associated with the input estimates is evaluated according to

the evaluation methods of Type A or Type B [6, 7, 72]. Type A standard uncertainty is

evaluated by statistically analysing a series of experimental observations. In this case, the

standard uncertainty is the experimental standard deviation that is obtained from a procedure

appropriate for calculating the arithmetic mean or regression analysis. Fig. 3.4 shows possible

components that cause of uncertainties.

Type A Evaluation of Standard Uncertainty

Type A evaluation of standard uncertainty may be applied when several independent
observations for each of the input were made under the same measurement conditions [6, 7, 72].

If there is sufficient resolution of the measuring system, an observable scatter or spread in the

values will be obtained.

As an example of a Type A evaluation, consider an input quantity Xi for which the value

is estimated from n independent observations Xi,k of Xi obtained under the same conditions of
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Figure 3.3: Illustration of the concept of GUM procedure [6] and according Sommer and Siebert

[76]: The knowledge of the measurement process on quantities that influence the measurement

results are quantified, so that a reliable statistical value is finally derived.

 

Figure 3.4: Different possible components of uncertainty

measurement. In this case, the input estimate xi is usually the sample mean:

xi = X̄i =
1

n

n∑
k=1

Xi,k (3.4)

and the standard uncertainty µ(xi) to be associated with xi is the estimated standard deviation
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of the mean:

µ(xi) = s(X̄i) =

(
1

n(n− 1)

n∑
k=1

(Xi,k − X̄i)

)1/2

. (3.5)

Type B Evaluation of Standard Uncertainty

3.2.1.4 The Law of Propagation of Uncertainties (LPU)

The law of propagation of uncertainty, which has been adopted by many organizations, is used

to implement standards and establish guidelines for measuring uncertainties [6, 7, 72]. To apply

this law, the values of the input parameters are represented as means and standard deviations

of the probability density functions of these variables. The combined standard uncertainty µ(y)

can be determined by using the law of propagation of uncertainty, which is represented by the

Eq. 3.6 and Fig. 3.5, is based on a construction of a linear approximation to the model function

Eq. 3.2.

µ2(y) =
N∑
i=1

(
∂f

∂xi

)2

µ2
s(xi) + 2

N−1∑
i=1

N∑
j=i+1

(
∂f

∂xi

∂f

∂xj

)
µ(xi, xj). (3.6)

where
(
∂f
∂xi

)
is the sensitivity coefficient, m is the degree of freedom and N is the number of

input in measurement model and µ(xi, , xj) are the possible covariances between them.

The LPU in Eq. 3.6, illustrated in Fig. 3.5. The model has mutually independent input

quantities X = (X1, X2, X3)T for which the values are estimated by xi with associated standard

uncertainties µ(xi), for i = 1, 2,. The value of the output quantity Y . is estimated by y, with

associated standard uncertainty µ(y).

 

Figure 3.5: Illustration of the propagation of uncertainties for N = 3 in put quantities

The sensitivity coefficients describe how the output estimate y varies with change in the

values of input estimates x1, x2, ...xN . In particular, the change in y produced by a small ∆xi

variation in input estimate xi, is given by Eq. 3.7. For a further discussion of the sensitivity

analysis, refer to section 3.4.

∆yi =
∂f

∂xi
∆xi. (3.7)



3.2. Uncertainty Analysis 31

If this change is generated by the standard uncertainty of the estimate xi, the corresponding

change in y is:

y =
∂f

∂xi
xi. (3.8)

The combined variance µ2(y) can thus be viewed as the sum of the terms, each of which

represents the estimated variance associated with the estimated output y generated by the

estimated variance estimate associated with each input xi. The degree of correlation between

xi and xj is characterised by the coefficient of correlation, which is defined as follows Eq. 3.9.

r(xi, xj) =
µ(xi, xj)

µ(xi)µ(xj)
. (3.9)

where r(xi, xj) = r(xj, xi) and −1 ≤ r(xi, xj) ≤ +1. If the estimates xi, xj are independent,

r(xi, xj) = 0. In addition, one variation does not imply an expected variation in the others.

The LPU is commonly written in a matrix format [77], and a compact way of writing the

Eq. 3.6, which avoids the use of doubly scripted summations, is:

µ2(y) = CUxC
T (3.10)

where co-vector of sensitivity coefficient; C = ∂yi
∂xi

, defined well as the following Eq. 3.11.

CT =

[
∂f

∂X1

, ...,
∂f

∂XN

]
| X=x (3.11)

Ux is the uncertainty matrix of order NXN associated with the estimate x of input quantities

X.

Ux =


µ(x1, x1) · · · µ(x1, xN)

...
. . .

...

µ(xN , x1) · · · µ(xN , xN)

 . (3.12)

The diagonal of the covariance matrix is given by the uncertainty of the parameters, which

is µ(xi, xi) = µ2(xi). The non-diagonal terms represent the covariance between the parameters

of the mathematical model.

The test results were also statistically analysed in order to assess their reliability. The

uncertainty was calculated using different references. The uncertainty in measurements of the

test parameter is calculated by standard distribution formula.

µA = s(X̄i) = µrep. (3.13)

Then, combined uncertainty (Ucombined) can be calculated then measurement uncertainty for

output quantities as shown below;

µcombined =
√
µ2(y) + µ2

rep. (3.14)



3.2. Uncertainty Analysis 32

The uncertainty of measurement is expressed as an expanded uncertainty with coverage

factor, k (see [6], which is depends upon the degree of freedom):

UE = kµcombined. (3.15)

The GUM provides general guidance for the application of the LPU to the spread of mea-

surement uncertainty. The main stages for the application of measurement uncertainty based

on LPU according to GUM is summarized below:

• Define the PDFs of the values of input parametersX1, X2..., XN , mean x = (x1, x2, ..., xN),

and deviations (standard uncertainty) with uncertainty µ(x) = (µ(x1), µ(x2), ..., µ(xN));

• For each parameters i, j in which values of Xi and Xj are mutually dependent, define the

FDF joint values of Xi and Xj covariance µ(xi, xj) associated with xi and xj;

• Determine the first order derivatives with respect to the input parameters;

• Calculate the best-fit value of y by evaluating the model at a fixed value of X equal to x;

• Calculate the sensitivity coefficients of the measurement model at the point x;

• Determine the uncertainty µ(y) based on the law of propagation of uncertainty;

• Calculate the effective degree of freedom (νeff ) associated with µ(y) considered for input

estimates νi by means of the Welch-Satterthwaite equation;

νeff =
u4(y)

N∑
i=1

c4i .u
4(xi)

νi

. (3.16)

• Calculate the expanded uncertainty Up and show the confidence interval. Knowing that

the probability distribution is a t distribution with νeff degrees of freedom, the coverage

factor ky can be determined for the desired level of confidence.

Fig. 3.6 depicts the procedure for estimating measurement uncertainty according to the GUM

and MCM.

This GUM approach is mainly concerned with univariate measurement models i.e. models

with a single scalar output quantity. There may be models with more than one output quantity.

However, multivariate measurement models (i.e. namely those with any number of output

quantities) can be problematic. Such quantities are generally mutually correlated because they

depend on common input quantities. A generalisation of the GUM uncertainty framework [8]

is used to provide estimates of the output quantities, the standard uncertainties associated

with the estimates, and covariances associated with pairs of estimates. The input or output

quantities in the measurement model may be real or complex, which is discussed in Annex A.
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Figure 3.6: Schematic description of the GUM and MCM uncertainty evaluation processes

3.2.1.5 Representation of Uncertainty

In practical application, the values of errors are always unknown to some extent. Therefore,

uncertainty is used to describe the possible outcome of an error. Uncertainty can be based on

conventional (recommended by the GUM), Bayesian or imprecise probabilities.

The conventional perspective deduces probabilities from a series of repeated random events.

For instance, if a random event has a probability of 95%. The conventional approach is hard

to validate for civil engineering applications in which usually only one trial is available. There-

fore, interpreting probability is not well suited to represent deterministic events in which the

uncertainty is associated with measurement uncertainty. Indeed, conventional probabilities are

expressed as PDF. Fig. 3.7 depicts a pdf for a random variable X, whereby confidence interval

bounded by Xlow and Xhigh contains a probability ∈ [0, 1].
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Figure 3.7: PDF of a random variable X, where a confidence interval bounded by Xlow and

Xhigh contains a probability ∈ [0, 1]

3.2.2 Bayesian Method

Bayesian statistics is based on Bayes’ theorem. This framework uses a definition of prob-

ability that allows probability distributions to be defined without physical data e.g. using

manufacturers specifications or other expert knowledge. In most measurement applications,

however, physical measurements (data) can be used to estimate one or more of the input

quantities. In such cases, the corresponding probability density can be obtained via Bayes’

theorem as follows [78]. Probability is understood as a degree of belief or of plausibility of a

proposition, which is conditional on all relevant information available about that proposition

[29, 32, 33, 34, 35, 36, 79, 80].

Given two propositions A and B, the probability of both of being true is equal to the prod-

uct of the probability of A being true times the probability of B being true given that A is

true, as is shown in Eq. 3.17.

P (AB) = P (A)P (B | A), (3.17)

where the vertical line stands for ‘conditional upon’ or ‘given’ for short. However, because A

and B can be interchanged, Bayes’ theorem follows:

P (A | B) =
P (B | A)P (A)

P (B)
(3.18)

where B is the observed data of measuring X.

A is the information I, the value of X lies within a given infinitesimal interval (ξ, ξ + dξ). A

quantity such as X will not be considered a random variable but rather as an entity with which

an information-based probability density function (ipdf), gx(ξ | I) can be associated based on

the given information I. The domain of this function extends over all possible values ξ of X
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and can thus be either discrete or continuous. The ipdf encodes the state of knowledge about

the quantity, such that gx(ξ | I)dξ is the information-based probability that the value of X lies

in the infinitesimal interval (ξ, ξ + dξ) [7].

Therefore, P (A) = gx(ξ | I)dξ and P (A | B) = gx(ξ | d, I)dξ, where gx(ξ | I) and gx(ξ | d, I)

are information-based probability density functions that describe the states of knowledge about

X without and with data, respectively. The data may consist of several pieces of information,

one of which might be the series of measured values x = (x1, ..., xn). The factor P (B | A)

reflects the belief about obtaining the data given that the hypothesis X ∈ (ξ, ξ + dξ) is true.

This is called the likelihood of the data and is written as L(ξ; d). Bayes’ theorem then becomes

gx(ξ | d, I) = CL[ξ; d)gx(ξ | I) (3.19)

where C is a normalization constant, such that the integral of gx(ξ | d, I) over all possible values

ξ is one.

The likelihood reflects the way our beliefs about having obtained the given data vary with

the possible values of the quantity. It is not an ipdf, so it does not need to be normalized.

In fact, the likelihood can be multiplied by an arbitrary constant, (or in general by a function

of the data alone), because the variable is ξ and the multiplier can then be absorbed into the

constant C.

If no data are available, the likelihood becomes a constant and gx(ξ | d, I) becomes equal

to gx(ξ | I). Also, if gx(ξ | I) can be taken to be a constant, and if L(ξ; d)is symmetric,

the expectation of gx(ξ | d, I) is equal to the corresponding maximum likelihood estimate in

conventional statistics. The likelihood requires a probability model based on the observation

data.

The pdfs gx(ξ | I) and gx(ξ | d, I) are called the ‘prior’ and ‘posterior’ pdfs, respectively.

This terminology is used because Bayes’ theorem is most commonly applied in a temporal

context: prior to evaluating the initial state of knowledge, gather the data, and obtain the

posterior state of knowledge under the probability model incorporated into the likelihood. In

words, the full result is that:

posterior distribution = likelihood x prior distribution/
∑

(likelihood x prior)

where the denominator (the likelihood accumulated over all possible prior values) is a fixed

normalising factor, which ensures that the posterior probabilities add up to 1;

posterior distribution ∝ (likelihood)x (prior distribution)

The relative influence of the prior data on the updated beliefs depends on how much weight

we give to the prior (how informative make it) and the strength of the data. For example, a
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large data sample would tend to have a predominant influence on our updated belief unless

the prior was extremely specific. If the sample ξ were small and combined with an informative

prior, the prior distribution would have a relatively greater influence on the updated belief;

this might be the case if a small observational study were combined with a prior based on a

meta-analysis of previous findings. The flowchart of the Bayesian inference for measurement

uncertainty quantification is depicted in Fig. 3.8. Univariate measurement model expressed as a

relationship between output quantity Y and input quantities X on which Y depends, is defined

by h in Fig. 3.8.

 

Figure 3.8: Flowchart of Bayesian inference for measurement uncertainty quantification

In this thesis, metrological results are assumed to be sampled from a normal probability

model. From a Bayesian point of view, X and V are considered as two measurands, only the

first of which is identified with a physical quantity. The relationship between X and V does

not arise from the measurement model but rather from the probability model. Assuming that

the probability model under which independent number of measurement n times, the results

are the values x = (x1, ..., xn) about quantity X are obtained is normal. Conditional on giving

values x of X and ν of V , the pdf for any given datum xi follows from the probability model

and is:

L(xi | x, ν) ∝ 1

ν1/2
exp

[
−1

2

(xi − ξ)2

2ν

]
. (3.20)

X and V are also independent, and they act as spatial and scalar parameters, respectively,

their joint prior separates into the product of a constant for the former multiplied by ν−1
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(Jeffreys’ prior) for the latter. The joint posterior becomes:

gx(ξ, ν | x) ∝ 1

νn/2+1
exp

[
− 1

2ν

n∑
i=1

(xi − ξ)2
]
. (3.21)

This expression can be conveniently arranged using the following identity

n∑
i=1

(xi − ξ)2 = (n− 1)s2 + n(x− x̄)2. (3.22)

The mean x̄ and standard deviation s2 are calculated according to Eq. 3.4 and Eq. 3.5. Although

the best estimate and associated uncertainty corresponding to the quantity V will rarely be

needed, they can be derived using Bayesian interface. Then,

gx(x, ν | x) ∝ 1

νn/2+1
exp

[
−1

2

(n− 1)s2 + n(x− x̄)2

ν

]
. (3.23)

The expectation of this density is equal to zero and, which is Student’s t density with n− 1

degree of freedom, and its variance is

r2 =
n− 1

n− 3
. (3.24)

From the expressions for the expectation and variance given in the reference for density

function, it can be concluded that the best estimate of the variance is:

ν = (rs)2 (3.25)

with a standard uncertainty equal to the square root of:

µ2
ξ =

(rs)2

n
. (3.26)

In this analysis, n does not need to be ‘large’; two observations are sufficient. However, in

order to obtain the standard uncertainty, n must be greater than three.

3.2.3 Monte Carlo Method

The MCM is a general tool for propagating distributions [7] through an input-output model

Y = f(X). The MCM carries the propagation of probability distributions sampling the prob-

ability distribution of the output quantity Y . In this method, PDF are explicitly assigned to

all input quantities Xi based on information concerning these quantities. In some common

circumstances, the JCGM [7] provides guidance on assigning PDFs to the input quantities Xi.

In order to construct a PDF for a quantity based on a series of indications, Bayes’ theorem can

be applied. If appropriate information concerning systematic effects is available, the principle
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of maximum entropy can be used to assign a suitable PDF. Indeed, the JCGM [7] does not

classify between Type A and Type B state-of-knowledge are probability distributions for the

input variables. Nevertheless, this classification is still important [81] because the information

that metrologists have for Type A and B quantities can differ greatly (statistical analysis or

other means respectively).

A fundamental parameter for obtaining reliable results through MCM is the number M

of trials or evaluations to be performed by the model. If M is chosen beforehand, there will

not be direct control over the results. A value of M = 106 is often considered appropriate

for providing a coverage interval of 95%; however, the random nature of the process and the

nature of the probability distribution of the output quantity Y influence the value needed for

M , which will vary in each case. The basic idea of this method is to draw random derivatives

from the distribution gx1, ..., xN(ξ1, ..., ξN) and to propagate these deviations through the model

shown in Fig. 3.2 to yield random deviates distributed of gy(η). By repeating this many times

yields an empirical distribution of gy(η), which is used to determine the estimate y and the

associated standard uncertainty u(y) as well as coverage intervals. The calculation steps are

shown in Fig. 3.6. The propagation of the probability density functions gi(ξi), i = 1, ..., N, for

the values of the input quantities through the model to provide the probability density function

g(η) for the output quantity value is illustrated in Fig. 3.9 for the case N = 3. The model input

quantities are X = (X1, X2, X3)
T . The probability density functions gi(ξi), for Xi, i = 1, 2, 3,

are rectangular, triangular, and Gaussian, respectively. The probability density function g(η)

for the value of the output quantity Y is asymmetric, which can be the case for non-linear

models. An asymmetric g(η) can also arise if the probability density functions for the values

of the input quantities are asymmetric. This Figure is the counterpart of Fig. 3.5 for the law

of propagation of uncertainty. Like the GUM, the JCGM [7, 31, 82] is concerned with models

with a single output quantity.

 

Figure 3.9: Illustration of the propagation of distributions for N = 3 input quantities
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3.2.3.1 Computational Aspect for Univariate Models

The MCM method defines only joint probability density functions considered in the JCGM

[7], which are univariate Gaussian. A univariate Gaussian probability density function with

expectation x = (x1, ..., xN)T and uncertainty matrix V is given by

g(ξ) =
1

((2π)NdetV )1/2
exp

{
−1

2
(ξ − x)TV −1(ξ − x)

}
. (3.27)

For the following equation, this probability density function reduces to the product of N

univariate Gaussian probability density functions when there are no covariance effects. In that

case,

V = diag(u2(x1), ..., u
2(xN)), (3.28)

where

g(ξ) =
1

(2π)N/2u(x1)...u(xN)
exp

{
−1

2

N∑
i=1

(ξi − xi)2

u2(xi)

}
(3.29)

=
N∏
i=1

gi(ξi) (3.30)

with

gi(ξi) =
1√

2πu(xi)
exp

{
−(ξi − xi)2

2u2(xi)

}
. (3.31)

Monte Carlo simulation provides a general approach to numerically approximating the dis-

tribution function G(η) for the value of the output quantity Y = f(X) The relevant model and

uncertainty propagation are defined in section 3.2.1. The model considers Eq. 3.2 and Eq. 3.3.

Let the PDF for the ith input quantity X − i be gxi(ξi) and the PDF for Y be gY (η). Let

GY (η) =

∫ η

−∞
gY (z)dz (3.32)

denote the distribution function (DF) corresponding to gY . An adequate approximation to

GY (η) will permit the determination of all required statistics associated with Y . The imple-

mentation of an MCM is given in the case of the model above. For instance, it will permit the

evaluation of the standard uncertainty associated with an estimate y of the output quantity Y .

The procedure is as follows:

• Select the number M of MCM trials to be made;

• Generate M vectors xr by sampling from the PDFs for the (set of N) input quantities X;

• For each vector xr, evaluate the model to give the corresponding value yr = f(xr) of the

output quantity;
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• Calculate the estimate y of the output quantity and the associated standard uncertainty

u(y) as the mean and standard deviation of the model values yr, r = 1, ...,M ;

• Sort the values yr, r = 1, ...,M , into non-decreasing, and use the sorted values to provide

a discrete representation G of the distribution function GY (η) for the output quantity;

• Use the discrete representation of the distribution function to calculate a 95% coverage

interval for the output quantity.

3.2.3.2 Estimate of the Output Quantity and the Associated Standard Uncer-

tainty

The mean y of the values yr, r = 1, ...,M, of the output quantity is taken as the estimate y

of the output quantity, and the standard deviation u(y) of the values is taken as the standard

uncertainty u(y) associated with y. y is evaluated from following:

y =
1

M

M∑
r=1

yr; (3.33)

and the standard deviation u(y) defined as following

u2(y) =
1

M − 1

M∑
r=1

(yr − y)2. (3.34)

The updating procedure evaluates the estimate of the output quantity and the associated

standard uncertainty, which avoids the need to store the complete set of model values [83].

3.3 Measurement Uncertainties & Model Assignment Un-

certainty in Monitoring Models

When measuring the value of a measurand, a vague statistical concept of the measurand can

result in inefficient analysis of uncertainty. The vagueness is caused by the fact that the value

of the measurand is an unknown parameter such as population mean or median and that the

measurement of this value is a random variable. The uncertainties of the input quantities

determine the uncertainty of the measurand. The estimation of uncertainty model of the

random variables is discussed in section 2.3. Type A measurement uncertainties are derived

by assigning a statistical model to an observation, and Type B measurement uncertainties

are derived by physically modelling the measurement process. Both types of uncertainties

are evaluated using Bayes’ theorem, the principles of probability calculus, and the rules for



3.3. Measurement Uncertainties & Model Assignment Uncertainty in Monitoring Models 41

constructing prior probability distributions.

A mathematical model has been developed to simulate the influence of various parameters on

strain measurement. The model takes into account the interaction between all input variables.

For such an application, the measurand is the mechanical strain, which is the sum of the

amplifier strain Eamp and the apparent strain Eapp. It is calculated using Eq. 3.35. Here,

the mechanical strain is the measured strain in structures. The amplifier strain denotes the

strain that is measured with the amplifier. The apparent strain is the strain that is caused by

temperature effects in the strain gauge:

Emech = Eamp + Eapp. (3.35)

3.3.1 Measurement Uncertainty Associated with Measurement Equa-

tion

The probabilistic treatment of the measuring errors requires a limit state function or response

function. The response function Eq. 3.36 provides a solution for this. Based on the physical

properties of the measurement process, the measurement equation is derived, and uncertainty

models are introduced for the associated random variables. This derivation is based on the

determination of Type B uncertainties [6]. Model uncertainty and assignment uncertainty are

also introduced. Model uncertainty Emech, which describes the uncertainty associated with

physically formulating the problem, yields Eq. 3.36. The measurement uncertainty is based on

a measurement equation developed by HBM [84] and [85]:

Emech = θEmech
+ Eamp + Eapp. (3.36)

A measurement equation is a mathematical relationship between input quantities and an

output quantity. This results in the measurement equation for the amplifier strain, in Eq. 3.37:

Eamp = fa,a
4

k(1 + fs,v + fs,s + fs,q + αs,k∆T20◦c)

UA
UB

+ fa,z; (3.37)

fs,q =
q(εq + εlν)

εl(1− qν)
(3.38)

where k - factor, fs,q is the transverse strain correction factor, αs,k is the temperature coefficient,

fs,v is the gauge variation factor, fa,a is the amplifier deviation, fs,s is the model uncertainty

of the gauge factor variation, and fa,z is the zero deviation. The transverse sensitivity error is

a function of the corrected values of the strains on the parallel and perpendicular axes of the

gauge, εa and εt respectively as well as the transverse sensitivity coefficient q and Poisson’s ratio

ν. If the ratio of the transverse to the longitudinal strain εq/εl differs from the calibration pro-

cedure, a correction according to Eq. 3.38 is considered depending on the transverse sensitivity
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of the strain gauge q. The resistance of the gauge can be changed by changing the temperature

of the material in which the stain is being measured or by changing the temperature of the

environment of the gauge. This apparent temperature-induced strain can become the main

source of uncertainty of measuring system. The relationship between strain and temperature

can be seen in Fig. 3.10. The tolerance of the temperature variation curve εT characterises the

uncertainty of the apparent strain increasing with temperature:

Eapp = ε′app∆T20◦c + εT∆T20◦C . (3.39)
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Figure 3.10: Relation between temperature and strain

Temperature-induced strain is determined by applying a much more general equation, which

can be used to evaluate the thermal output if the conditions for using the graph and equation

provided by the manufacturer cannot be met. The equation is as follows [86]:

ε′app =

[
βG + Fi

(
1+Kt

1−νKt

)
(αS − αG)

]
∆T20◦C

k
(3.40)

where βG is the temperature coefficient of resistance of the grid conductor, αS and αG are the

thermal expansion coefficients of the substrate and the electrical resistance of the conductive

grid, respectively, T◦C is the temperature at which the Wheatston bridge has been balanced to

zero strain, and k is the gauge-factor setting of the measuring instrument. This equation takes

into account the transverse sensitivity of the gauge in the term (1 +Kt)/(1− νKt) because in

isotropic materials, the thermal expansion/contraction will be uniform in all directions. The

gauge factor refers only to the sensitivity of the strain gauge in a uni-axial stress state with

a principal strain of 1/ν. The shape of this equation also cannot be assumed because the

terms inside the brackets are functions of temperature [86]. This equation clearly shows that

the thermal output depends not only on the characteristic of the strain gauge but also on the

thermal and mechanical properties of the material to which the gauge is bonded.
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In general, the mean µi and the standard deviation σi are associated with strain measure-

ment i and the prescribed resistance threshold of the monitored physical quantity. The statis-

tical descriptors can be obtained from measurement. The application of measurement Eq. 3.37

produces i measurement uncertainty models Mu,i for i different strains given by Eq. 3.41:

Eamp | UA/UB ∼Mu,i(µi, σi). (3.41)

The parameters of this model µi and σi are considered as uncertain in order to account for

the assignment uncertainty. A prior probability density function for the parameters is derived

by calculating the individual probability density Pj by associating j different reference strains,

which is given in Eq. 3.42. If the reference strain, εR,j of a normal distribution is the mean

value, µi, the prior density Pµ,i can be modelled by a normal distribution with a mean µ′i and

standard deviation σ′i, i.e.

P ′(µi, σi |Mu,i) = P (Mu,i | εR,j); (3.42)

εR,j =
4

k

(
UA
UB

)
. (3.43)

The likelihood estimate of the parameter is derived from observations of the measurement

and is defined by Eq. 3.44:

L(µi, σi | ε1...εn) =
∏n

j=1
P (εj | µi, σi). (3.44)

The posterior distribution of the parameters is derived via Bayesian updating, and marginal

distribution of the mechanical strain is calculated with Eq. 3.45:

P Poat
Eamp =

∫ ∞
−∞

P (Eamp | µ, σ)P ′′(µ)P ′′(σ)dµdσ. (3.45)

The uncertainty of the assignment is calculated using these steps and is contained in Eamp.

The measurement Eq. 3.37 and Eq. 3.39 are inserted into Eq. 3.36, and the measurand can be

determined.

3.3.2 Measurement Uncertainty Associated with Observation Equa-

tion

An alternative approach starts from the observation equation, which relates to the experimen-

tal data to the measurand. This allows a uniform treatment of the most diverse metrological

problems. Once it is used in the context of Bayesian interface, it also facilitates the exploitation

of any information provided by experimental data. Here, the amplifier strain and the apparent
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strain are determined based on observation ε using the definition of Type A measurement un-

certainty [6, 7]. The measurement Eq. 3.35 is rewritten for distinguishing the different concepts

of uncertainty determination and to account for the model uncertainty θεmech in Eq. 3.46:

εmech = θεmech + εamp + εapp. (3.46)

It is assumed that n realizations of the amplifier strain ε follow a normal distribution with

the parameters µ and σ in Eq. 3.47:

εamp ∼ N(µ, σ). (3.47)

The parameters of the distribution are estimated using the method of maximum likelihood.

The statistical uncertainties of the parameters are given by Eq. 3.48:

Pεamp(εamp) =

∫ ∞
−∞

P (εamp | µ, σ)P (µ)P (σ)dµdσ. (3.48)

Together with temperature data, the distribution of εapp can be determined, which leads to

the distribution of εmech, the measurement uncertainty. The measurement uncertainty obtained

from observation equation has different boundary conditions associated with the probabilistic

models. In contrast to the measurement equation based measurement uncertainty, the observa-

tion equation based measurement uncertainty applies to the type of sensor and amplifier used

as well as to the specific application and surrounding conditions. In these circumstances, it is

advantageous to express the measurement model as an observation equation (or as a system of

simultaneous observation equations) instead of as a measurement equation. This means that

focus is placed on the measurement data and that these are expressed as functions of the strain.

It also implies postponing this to a subsequent phase of the analysis, whereby focus will be on

the measured strain.

3.3.3 Measurement Uncertainty Associated with Bayesian Updat-

ing Approach

Uncertainty in an estimate of the value of a measurand is assessed by propagating the un-

certainty in estimates of values of input quantities based on an equation that expresses the

former values as a known function of the latter values. However, in measurement situations in

which some of the input quantities depend on the measurand, this approach is circuitous and

ultimately impracticable.

The observation equation applied to determine the measurement uncertainty must not nec-

essary cover all surrounding conditions but at least those that apply for situations in which
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the observations are generated. This clearly constitutes a limitation of the observation-based

measurement uncertainty, which is typically experienced during measurements. Measurement

uncertainty based on the measurement equation should give an upper boundary; the measure-

ment uncertainty based on the observation equation may give a lower boundary.

The Bayesian approach is particularly advantageous in situations in which both Type A

and Type B uncertainty must be taken into account [6, 7]. It is also useful for harmonising

information about a measurand derived from empirical data with information derived from

other sources (e.g. expert knowledge or past experience).

Here, all participating quantities are modelled as random variables if there is uncertainty

about their values – either because knowledge about them is imperfect or incomplete or because

they are subject to the unpredictable vagaries of experimentation.

Measurement uncertainty based on the measurement equation can be viewed as the accu-

mulation of the prior knowledge of the measurement process and therefore constitutes the prior

measurement uncertainty given by Eq. 3.49:

P ′(Emech) = P (θ, Eamp, Eapp). (3.49)

The posterior measurement uncertainty is based on the Bayesian updating. It utilises all

available information and data, informative distributions for the prior, and the likelihood i.e.

measurement uncertainty based on observation equation. The posterior measurement uncer-

tainty based on the distribution of measurement uncertainty accounting for the prior knowledge

and likelihood function is given by Eq. 3.50:

P ′′(Emech | εmech) =
P (Emech | εmech)P ′(Emech | εmech)∫∞

−∞ P (Emech | εmech)P ′(Emech | εmech)dµdσ
. (3.50)

This posterior measurement uncertainty is interpreted as an estimate of the measurement

uncertainty for an application. It should be situated between the boundaries established by the

measurement-equation-based and observation-equation-based measurement uncertainty. This

is clearly based on the boundary condition of the model involved.

3.4 Sensitivity Analysis (SA)

Sensitivity analysis is an important part of metrology, particularly for the evaluation of mea-

surement uncertainties. It affords the metrologist a better knowledge of the measurement

procedure and facilitates the improvement of it. A tool for sensitivity analysis is developed in

the GUM [7]. Terms such as influence, importance, ranking by importance, and dominance are

all related to sensitivity analysis. On the other hand, the objective of uncertainty analysis is
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to assess the effects of parameter uncertainties on the uncertainties in calculated results.

Uncertainty analysis takes into consideration the behaviour of a measurement scenario with

respect to the evaluation of measurement uncertainty, whereby parameters of probability distri-

butions of input quantities are directly varied in order to examine the effect on the measurement

uncertainty of the measurand. The necessary concept provided in the modelling is already de-

scribed in section 3.2.1.2.

This section focusses on sensitivity analysis. It examines the influence of an individual

quantity or part of the model on the combined measurement uncertainty (also in comparison

with the influence of the other quantities). The most direct approach for sensitivity analysis is

to fix specific influence quantities to a representative value (e.g. mean or median) in order to

prevent its variation for simulation. This is given by the partial derivatives of the measurement

mode for which the best value is computed. Recent implementations of MCMs, which where

were encouraged by the JCGM [7], do not entail computing partial derivatives. Another sen-

sitivity measure should be used, if possible, a global method that is more accurate than other

ones [40, 41, 42, 43].

This section discusses selected applications of sensitivity analysis as well as the differences

between them various. Saltelli et al. [40] provide a good overview of sensitivity analysis methods

and define the distinction between:

• Factor screen to extract influential factors from a system with a large number of input

quantities;

• Local sensitivity analysis to examine the local (point) influence of the influence quantities,

usually using the partial derivatives approach;

• Analysis of global sensitivity to apportion the uncertainty to the influence quantities.

The sensitivity analysis and uncertainty methods have been compared by Allard and Fischer

[87] and Mario et al. [88]. The methods are inherent and a feeling for the behaviour of the

measurement scenario under investigation. Thus, the when choosing a sensitivity method many

aspects of the problem (e.g. linearity/monotony of the measurement model, computational time

required for one run, and the total number of runs required) should be considered.

3.4.1 Local SA: Sensitivity Coefficients of GUM

The advantage of local SA is that the computational effort required is much less than that

required for factor screening of global SA because the method for local SA uses analytical

methods and partial derivatives. According to the GUM approach, the SA indices are based
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on the partial derivatives that have been calculated when applying the LPU. It linearises the

measurement model and reduces input quantities to their first two moments in order to evaluate

the measurement uncertainty. The measurement model described in Eq. 3.2 and sensitivity

coefficients can be calculated using the following Eq. 3.51.

SGUMi =
( ∂f
∂xi

)2.u2(xi)

u2(y)
(3.51)

where the partial derivatives ∂f/∂xi are taken as sensitivity coefficients in the GUM [6] as

already seen in Section 3.2.1.2. The coefficients indicate how the output quantity estimate y

varies with changes in the value of the input estimates x1, ..., xN . Kessel at al. [89] and Motra

et al. [90] have introduced a coefficient of contribution for both uncorrelated and correlated

input variables. It can be defined as:

wi =
( ∂f
∂xi

)2.u2(xi)

u2(y)
=

( ∂f
∂xi

)2.u2(xi)

N∑
j=1

∂f
xj
.u2(xj)

. (3.52)

It is assumed that the input quantities are mutually independent. This is the case in the

example presented here. It describes the relation of a quantity Xi to the measurand Y .

3.4.2 The one At a Time Method (GUM-S1)

The JCGM [7] suggests this method for estimating sensitivity indices for an MCM. The com-

putation of an associated sensitivity measure associated is not straightforward. For simulation,

the sensitivity indices are evaluated by varying one quantity and keeping all others fixed. This

method provides a quantification of effect to the given input quantity Xi on the standard de-

viation of the output quantity, which operates in terms of the actual non-linear model rather

than a linearised counterpart.

This method implies making as many Monte Carlo simulations as the total of input quanti-

ties n, which may be quite heavy if n is large. It also allows for the evaluation of the sensitivity

while varying only one input quantity at a time. However, in reality, all input quantities are

varied at once. If interactions should arise in a measurement process, this will only be to the

extent that all quantities involved were varied.

For comparison with the absolute value of linear sensitivity coefficients ci = ∂f/∂xi for a

quantity Xi the non-linear coefficient can be used. The term ui(y) is the resulting uncertainty

of a MCM, which is explained in section 3.2.3.

ci =
ui(y)

u(xi)
(3.53)
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where only the quantity Xi is varied while the other quantities Xj, j = 1, ..., N and j 6= i, are

set to their best estimate. The standard uncertainty u(xi) of the quantity Xi can be obtained

also using the MCM.

3.4.3 Variance-Based Sensitivity Indices

3.4.3.1 Definition

Global sensitivity refers to the global variability of an output over the entire range of the input

variables of interest. It thus provides an overall view of the influence of inputs on an output

as opposed to a local view of partial derivatives. This thesis mainly focusses on measurement

uncertainty, which is estimated using the GUM, the Bayesian Method, and the MCM for

evaluating the measurement model. Therefore, the examples presented here concentrate on

variance-based methods i.e. methods focussing on the squared standard deviation.

The total variance decomposition theorem states that the variance of a quantity Y may be

decomposed as the sum of the variance of the conditional expectation of Y given Xi and the

expectation of the conditional variance of Y given Xi:

V (Y ) = V [E(Y ‖ Xi)] + E[V (Y ‖ Xi)]. (3.54)

The first term Vi = V [E(Y ‖ Xi)] denotes the part of the variance of Y that is cause by the

variations of the input quantity Xi, while the second term E[V (Y ‖ Xi)] denotes the part of

the variance of Y that is attributed to all input quantities except for Xi.

The first order sensitivity index is then defined as:

Si =
Vi

V (Y )
. (3.55)

A second-order sensitivity index can also be deduced from the variance because of the

coupling of quantities Xi and Xj:

Si,j =
V [E(Y ‖ Xi, Xj)]− Vi − Vj

V (Y )
. (3.56)

Higher order sensitivity indices can be obtained in the same manner until nth order. Of

course, it would be difficult to compute them all. Moreover, the higher the order, the more

likely the sensitivity index is to be null. Hence, it is possible to define a total order sensitivity

index Ti, which includes all the effects of all orders in which the input Xi is involved.

Ti = Si +
∑
j 6=1

Si,j + ...+ S1,2,...,n (3.57)
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If an input quantity Xi does not interact with another input in a measurement process,

then Ti = Si.

In order to improve a measurement process, the total sensitivity index should be considered

in the general case. If a contribution standard uncertainty is reduced, the influence on the

standard uncertainty of the output will result from the corresponding first order sensitivity

index. However, it will also result from the higher order sensitivity indices if the same input

quantity is involved. This is the case for the examples presented here.

There are different methods available for estimating these quantities. The Sobol’ method

is presented here. A variation of this approach, which allows the total effect of a quantity on

the measurement uncertainty to be investigated using less computational power, will also be

introduced.

3.4.3.2 The Sobol’ Sensitivity Index

The Sobol’ method [41, 87] is used to quantify the sensitivity index associated with the evalua-

tion of measurement uncertainty. This method allows the computation of first and higher order

sensitivity indices as well as total order indicies [41]. To describe the Sobol’ sensitivity estimate

for two M-samples (xi,j)i=1,...,n;j=1,...,M and (x′i,j)i=1,...,n;j=1,...,M , they are mixed together. The

first order sensitivity index is then estimated by the quantity:

SSboli =
D̂i

D̂
(3.58)

where

D̂i =
1

M

M∑
k=1

f(x1,k,...,xn,k)f
(
x′1,k,...,x

′
(i−1),k,xi,k,x

′
(i+1),k,x

′
n,k

)
− f̂ 2

0 (3.59)

is the estimator of the variance of the conditional expectation of Y given Xi and

D̂ =
1

M

M∑
k=1

f 2(x1,k,...,xn,k)− f̂ 2
0 (3.60)

is the estimator of the total variance of Y . The quantity

f̂0 =
1

M

M∑
k=1

f(x1,k,...,xn,k) (3.61)

denotes the empirical mean of y.

D̂ij may also be defined as above with both xi,k and xj,k taken from the first sample, while

the other inputs are taken from the two samples and enable the estimation of the second order

indices:

SSobol
′

i,j =
D̂ij − D̂i − D̂j

D̂
. (3.62)
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Each Sobol’ index SSoboli,j represents a sensitivity measure that describes the amount of each

variance D̂ caused by the randomness of the single random input variables and the mapping

of this onto the output variables. In practice, all partial sensitivity indices involving the single

input variable xi(i = 1, 2, ..., n) are summed up to the total sensitivity index T Sobol
′

i in Eq. 3.63

in order to evaluate the total effect of xi. The total Sobol’ indices thus consider the interaction

between the input variables. Each Sobol’ index T Sobol
′

i represents the sensitivity of the mea-

surement model with respect to input variable xi without assuming linearity or monotonicity

in the model:

T Sobol
′

i = 1− D̂−i

D̂
(3.63)

where:

D̂−i =
1

M

M∑
k=1

f(x1,k,...,xn,k)f
(
x1,k,...,x(i−1),k,x

′
i,k,x

′
(i+1),k,xn,k

)
− f̂ 2

0 . (3.64)

Such an estimation is computationally expensive. Many runs are required to reach the

convergence of the estimation. Building on the recommendation of Tang et al. [92], the Latin

hypercube sampling (LHS) method [93] was used to implement the Sobol’ method. Overall,

computing the first-order, second-order, and total-order sensitivity indices requires n(m + 2)

model evaluations, whereby n is the number of LHS and m is the number of parameters being

analysed.

3.5 Reliability Analysis

Reliability relates the magnitude of the measurement error in observed measurements to the

inherent variability in the ‘error-free’, ‘true’, or underlying level of the quantity (terms are

used synonymously) between subjects. If the reliability is high, measurement errors are small

in comparison to the true differences between subjects. Subjects can thus be relatively well

distinguished (i.e. in terms of the quantity being measured). If the measurement errors tend

to be large compared with the true differences between the subjects, reliability will be low;

differences between the measurements of two subjects could be simply attributable to error

rather than a genuine difference in their true values. This section will discuss how the reliability

theory can be applied to a metrological model. Reliability theory is applied in the destructive

testing of structural steel, concrete, soil, and monitoring models [91].

The limit state function G = R− S is the origin of the formulation engineering structures,

whereby R is the resistance and S is the effects. The variables R and S are random and are

described by the mean value (µR, µS) and the standard deviation (σR, σS). In fact, G is the

so-called safety margin M = R − S, see Fig. 3.11. In practice, neither R nor S are constant
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parameters. Therefore, the description of these takes into account the scattering of the loads

on a component as well as the scattering properties of the materials. There are three possible

conditions:

• R > S permissible condition;

• R = S, limit state condition;

• R < S Failure condition.

In the simplest case, the limit state function g(Xi) can be the function of just two random

variables R and S, whereby the first is the generalised structural resistance and the second

is the generalised action or affect. If the generalised action or action effect is bigger than

generalised resistance, failure occurs. Therefore, the probability of failure of the R < S state is

determined by evaluating the following integral:

pf = P (R < S) =

∞∫
−∞

fs(x)FR(x)dx (3.65)

whereby FR(x) is the probability that the R is smaller than a predetermined value x. In

Fig. 3.11, this is the area under the PDF of R to the left of x. Function f(x) is the value of the

PDF effect to S at the point x. The probability that both R < S, and s = x is the product of

f(x) and FR(x). Because x is limited between −∞ and +∞, it can be assumed, as shown in

Eq. 3.65, that the integral is formed within these limits. The shaded area represents the failure

domain D. This is a convolution integral. Only in simple cases is the solution a closed one.

In structural engineering, the application of reliability theory is presented in Fig. 3.11 and

 

Figure 3.11: Descriptive representation of the Convolution integral according to Eq. 3.65 [94]

Fig. 3.12. The representation of the PDF for R and S and therefore the PDF generated for

R−S are shown. The failure region shown in Fig. 3.12 clearly corresponds to the pf in Eq. 3.65

formulated by the integral.
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Figure 3.12: Top: PDF of resistance R and impact S. Bottom: PDF from transformation

Z = R− S. The reliability index β can be read out as a multiple of σZ [94]

For normally distributed resistance and normally distributed effect, the mean value µZ

and standard deviation σZ are defined as:

µZ = µR − µS; (3.66)

σZ =
√
σ2
R + σ2

S. (3.67)

The safety index β is represented as a multiple of the standard deviation σZ and lies to

the right of the failure region pf , as is shown in Fig. 3.12. Each value of β corresponds to a

probability of failure, which in the case of a normal distribution for R and S via pf = φ(−β)

can be determined (for mean = 0 and standard deviation = 1).

The probability of failure pf can be expressed by following equation:

pf = P (R− S < 0) = P (Z < 0) = φ

(
0− µZ
σZ

)
= φ(−β). (3.68)

For cases in which it is at the limit state function, R − S is linear function, and R and

S are normally distributed. As described above, pf can be calculated by hand. If, however,

the limit state function of several factors (basic variables) is not normally distributed, a simple

calculation is not possible. First order reliability method (FORM) and second order reliability

method (SORM) are used [95].

The weight of influence quantities in the measurement model is calculated as follows:

αR =
σR√
σ2
R + σ2

S

;αS =
σS√

σ2
R + σ2

S

; (3.69)
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α2
R + α2

S = 1. (3.70)

The problem can be illustrated graphically, as in Fig. 3.13 in which, marginal density func-

tions fR(r) and fS(s) together with the joint density function fR,S(r, s) of two random variables

are shown. The shaded area represents the failure domain D. For such a problem, the proba-

bility failure becomes:

pf = P (R− S < 0)

∫
D

∫
fR,S(r, s)drds (3.71)

when the basic variables R and S are independent (there is no any statistical correlation

between them) Eq. 3.71 can be rewritten as follows:

pf = P (R− S < 0)

∞∫
−∞

FR(x)fS(x)dx (3.72)

where FR(x) is the probability that R ≤ x and fS(x) represent the probability that load effect

S takes the value between x and x + ∆x(δx → 0). The integral over all possible x gives the

total probability of failure.

 

Figure 3.13: Two random variables joint density function fR,S(r, s), marginal density functions

fR(r) and fS(s) and as shaded failure domain, from Schneider [94]

These measures of variability can be expressed as standard deviation (σ). Reliability is

formally defined as:

λ =
V ar(X)

V ar(Y )
=

σ2
x

σ2
x + σ2

u

=
σ2
x

σ2
y

(3.73)

where Xi: True value, Yi: Measurement of X, Ui: measurement uncertainty.

If reliability is high, measurement uncertainties are small in comparison to the true difference

between subjects. Subjects can thus be clearly differentiated based on the uncertainty-prone
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measurements. Conversely, if the measurement uncertainty is larger than the true difference

between the subjects, the reliability will be low. The difference between the measurements of

two subjects could simply arise from uncertainty rather than a genuine difference in the true

values.

3.6 Robustness of Experiments

During the last decade, planned experiments have become a major tool for improving quality,

which was largely stimulated by the quality engineering ideas of Taguchi [23]. A major goal

of Taguchi’s [23] experiments was to determine which design factors (i.e. controllable process

parameters) lead to dispersion (i.e. affect variability) and figure out how to adjust them in such

a way that minimises variability [96, 97]. Robust design refers to activities aimed at achieving

that goal. One of the novel ideas in Taguchi’s work on industrial experiments is the use of noise

factors. These are impossible or too expensive to control during product manufacture or use.

However, they can be set at fixed levels during an experiment and varied jointly with design

factors. The use of noise factors can thus dramatically increase power for detecting factors

with dispersion effects provided that the noise factors are explicitly modelled in the subsequent

analysis [98]. In Fig. 3.14, it is shown that the robustness and optimal complexity of the model

highly depend on the size and quality of the data.

The Taguchi method uses a loss function to determine the quality characteristics. Loss

function values are also converted to a signal-to-noise (S/N) ratio (η). In general, there are

three different quality characteristics in S/N ratio analysis i.e. ‘the nominal is the better’, ‘the

larger is the better’, and ‘the smaller is the better’. For each level of process parameters, the

signal-to-noise ratio is calculated based on S/N analysis.

Nominal is the best;

η = S/NT = −10log

(
ȳ2

s2y

)
(3.74)

Larger is better;

η = S/NL = −10log

(
1

n

n∑
i=1

1

y2

)
(3.75)

Smaller is better;

η = S/NS = −10log

(
1

n

n∑
i=1

y2i

)
= −10log

(
ȳ2 +

n− 1

n
s2
)

(3.76)

where ȳ is the mean of observed data; s2y is the variance of y, n is the number of observations

(degree of freedom) and y is observed data.
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Figure 3.14: Scheme for predicting the uncertainty depending on the size and quality of the

data set, which influence the estimation uncertainty

The equation of ‘the nominal is the best’ was selected for the calculation of S/N ratio

because the nominal values of experimental inputs and roundness uncertainty were desirable in

terms of good experimental design.

Robust design is one of the key design parameter on the performance of the system is less

sensitive to small variation in these parameters. This is done based on the response of the

experimental output, as shown in Fig. 3.15.

 

Figure 3.15: Exploring the nonlinearity of the experimental model to minimize the uncertainty

of the response
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3.7 Complexity and Cost Factor for Quality Assessment

The best measure for the generating ability is the error of prediction of as many independent

separate validation data as possible. According to Fig. 3.14, the uncertainty of prediction is

composed of two main contributions i.e. the remaining interference uncertainty and the esti-

mation uncertainty. The interference uncertainty is the systematic uncertainty (bias) caused

by unmodelled interference in the data; the calibration model is not complex enough to capture

all the interferences of the relationship between sensor response and analysis. The estimation

uncertainty is caused by modelling various kinds of random noise. The optimal prediction is

obtained when the remaining interference uncertainty and the estimation uncertainty balance

each other, as is shown in Fig. 3.14. If an overly complex model leads to increased prediction

uncertainty, this is referred to as over-fitting. As seen in Fig. 3.14, the optimal complexity of

the model highly depends on the size and quality of the calibration data set. For data sets

that are noisy and limited in size, a simple calibration model is needed in order to prevent

over-fitting.

The two curves in the Fig. 3.16 represent the costs inflicted by low quality data and the

costs of maintaining high data quality. The costs inflicted by low quality data are, for exam-

ple, faulty decisions based on low-quality data quality (which may or may not be based on

experimental design). The costs of ensuring and maintaining high data quality simply refer to

the work of assuring or improving data quality. The total costs associated with data quality

are the aggregated cost of these two curves. From Fig. 3.16, it can be seen that assuring data

quality would have the greatest effect i.e. the costs inflicted by low quality data decrease ex-

ponentially. Furthermore, the costs of ensuring high data quality are not casually related to

their importance. Thus, the cost of assuring data quality directly increases with the cost data

quality and assurance.

Interrelated components are generally quantified using the complexity and cost of different

systems. Moreover, measuring the complexity of the experimental model complexity entails

taking into account the number of parameters or simply PMs, the functional form, the range

of the parameters, and the parameter prior. The most complex model has the maximum infor-

mation regarding the response and is therefore the most beneficial for the user. The optimal

complexity of the model highly depends on the size and quality of the data (Fig. 3.14 and Fig.

3.16). For data sets that are noisy and limited in size, a simple model is needed to prevent

the increased prediction error resulting from an overly complex model. Both the cost of ex-

periments and the quality of data increase with the increasing number of PMs. Standardised
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complexity is calculated as follows:

Km.norm =
nPM,m

nPM,max

(3.77)

where nPM,m represents the number of PMs of the considered experimental model m and

nPM,max represents the number of PMs of the most complex experimental model.

 

Figure 3.16: Total costs incurred by data quality on the experiment

3.8 Inter-laboratory Quality Assessment

Inter-laboratory studies (especially ‘proficiency testing) are conducted to ensure measurement

capability for commerce, to evaluate national and international equivalence of measure, and

to validate measurement devices/methods or standard materials. In many inter-laboratory

studies, a pilot lab prepares materials or objects to be measured and delivers them to partic-

ipating labs. It is usual for one or more laboratories to report measurements that differ from

the majority. There is no valid method for handling such differences in a statistical analysis.

Methodologies for analysing inter-laboratory studies that model potential laboratory deviation

must therefore be developed in such a way that prevents them from dominating the estimation

of a measurand.

According to the DIN [99] accreditation, GRK 1462 feels constrained to continually increase

its quality management system and professional competence. The determination of measure-

ment uncertainty became an important topic in laboratory work. The models for estimating
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measurement uncertainty in testing are discussed in section 3.2. These up-to-date calculation

models are based on actual testing, standard, updated pre-standards, related guidelines, or the

literature.

The results of proficiency testing (including statistical distribution) can be represented in

various ways. To evaluate the data, the appropriate statistical methods must be chosen because

there is no standardised method for evaluating proficiency testing. To evaluate and assess the

results of a proficiency testing, the following four steps are implemented [100]:

• Review and assessment of homogeneity, and stability of testing;

• Determination of mechanical properties and its uncertainty;

• Calculation of performance using statistics;

• Evaluation of performance.

3.8.1 Homogeneity Testing

Uniformity is a state in which a uniform structure composition has one or more predetermined

characteristics. A reference material is deemed to be uniform in terms of a certain property if

the given value lies within the specified uncertainty limit. The random homogeneity is evaluated

using a statistical significance test (hypothesis testing). However, each statistical test method

has some mathematical deficiency, which depends on the sample size. When applying test

methods for the sample size examined, the null hypothesis of the material being homogenous

is not refuted [101]. A more sensitive test method and/or a higher sample size may lead to a

rejection of the null hypothesis. The homogeneity of a material can therefore never be proven.

It can only be determined at a defined level of significance or non-homogeneity. The uncertainty

of the materials value X, µx is calculated from Eq. 3.78:

µx =

√
(µE)2 +

(
Shom√
nhom

)2

+

(
ms

2
√

3

)2

(3.78)

where, µE is the uncertainty of a single measurement, Shom is the standard deviation of the

homogeneity test, nhom is the number of tested/used samples, and ms is the measuring step.

The mean and standard deviations were calculated for the results of all individual experi-

ments. An F-test was used to determine equal or unequal variances between the groups, and

a two-sample t-test was used to determine the significance in the results. A t-test with a p-

value less than 0.05 (one-tail) was considered statistically significant, as asown in Fig. 3.17 and

Fig. 3.18.



3.8. Inter-laboratory Quality Assessment 59

A negligible degree of heterogeneity may be preferable to a significant degree of uncertainty

(Fig. 3.18, [101]) because there may be doubts about the effective degree of heterogeneity.

 

Figure 3.17: Example of a homogeneity study in which the detected heterogeneity is signif-

icant (Fexp > F0.05) but negligible compared to the uncertainty interval of the certification

measurement

 

Figure 3.18: Example of a homogeneity study in which no heterogeneity can be detected (Fexp <

F0.05) but possible heterogeneity may be significant compared to the uncertainty interval of the

certification measurement
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3.8.2 Statistical Analysis

The statistical evaluation of the experimental results was based on the ISO 13528 [102] and

the DIN EN ISO/IEC 17043 [103]. Because of an increased understanding of measurement

uncertainty, it is seeing increased use in the evaluation. The measurement uncertainty of the

assigned value and the measurement uncertainty of the participant result can be taken in

account. If the standard uncertainty µx of the assigned value is much larger than the standard

deviation for proficiency testing σ, t there is risk that some laboratories will receive action

and warning signals because of inaccurately determined value and not laboratory error. The

standard uncertainty of the assigned value shall therefore be established with maximum limit

of 5 GPa in Eq. 3.80 [102] and must be met:

µx ≤ 0.3σ ≤ 0.1limit∗ (3.79)

where, σ standard deviation for proficiency testing.

The allowable deviation is defined as the limit∗

limit∗ = 3

√
(µx)2 +

(
limit

3

)2

. (3.80)

Depending on its interpretation, standard value (z-score) indicates the performance of a

participant (i.e. satisfactory, questionable, or unsatisfactory). Z-score (the most commonly

used score, measurement uncertainty is not taken into account):

z =
x−X
σ

(3.81)

where, x is the result reported by participant; X is the assigned value; σ is the standard

deviation for proficiency assessment.

z’-score (standard uncertainty of the assigned value is taken into account);

z′ =
(x−X)√
σ2 + µ2

x

(3.82)

where, µx the standard uncertainty of the assigned value X.

zeta-score (standard uncertainty of the assignment value and the participants result is taken

into account);

ζ =
(x−X)√
µ2
x + µ2

X

(3.83)

where, µx is the participant’s own estimate of the standard uncertainty x; µX is the standard

uncertainty of the assigned value X.
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En number (expanded uncertainty of the assigned value and the participants result is taken

into account)

En =
(x−X)√
U2
x + U2

ref

(3.84)

where, Ux is the expanded uncertainty of the participant’s result x; Uref is the expanded

uncertainty of the assigned value X determined in a reference laboratory.

The following judgment is commonly made for z − z′ and zeta score:

• |z| ≤ 2.0 the score indicated “satisfactory” performance and generates no signal;

• 2.0 < |z| < 3.0 the score indicates “questionable” performance and generates a warning

signal;

• |z| ≥ 3.0 the score indicates “unsatisfactory” performance and generates an action signal.
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Figure 3.19: z-score bar chart of thickness of sample and tensile strength result of steel samples

based on the Tensile Testing of Metals Proficiency Testing Program [104]

The following judgment is commonly made for En number:

• |En| ≤ 1.0 the score indicates “satisfactory” performance and generates no signal;

• |En| > 1.0 the score indicates “unsatisfactory” performance and generates an action

signal.

Fig. 3.19 shows the results for just those laboratories that give z-score within the range ±3.0.

The measurements of specimen thickness s for laboratories 1, 6, 7, 11, 12, and 16 that had a

high degree of uncertainty have not been included in the figure.





Chapter 4

Novel Methodology for the Quality

Assessment of Experimental Models

4.1 Introduction

The measurement infrastructure for materials is highly complex. There is therefore a lack of

internationally recognised compatibility for measuring key properties based on a sound un-

derstanding of the behaviour of materials. The experimental model is a convenient way to

increase the awareness of the need for a rigorous approach to measuring the properties of mate-

rials properties, for an improved understanding of the sources of variability, for the development

of improved measurement methods, and for their harmonisation for international acceptance.

This would improve the quality and reliability of materials data and generate a recognised

framework for the measurement of materials [105].

This chapter is structured according to the typical modelling workflow of measurements.

Establishing a complete comparative modelling pipeline was a basic prerequisite for dealing

with loop prediction, different types of models, their relationship to the experimental model,

and the assessment of quality assessment, which are described below. This chapter discusses the

use of statistical analysis in assessing the output of the experimental models and experimental

data. The assessment is performed in three parts; the first is based on a qualitative analysis

of the output, which includes theory generation, problem identification, and the design of ex-

periments. Qualitative assessment aims to improve the quality of experimental models. The

second part is based on the quantitative analysis of experimental models. Different statistical

methods are used to quantify the quality of models. The third part is based on the calculation

of weighted for reliability and quantify the quality of output.
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4.2 Evaluation Algorithm

Evaluation methods as a tool for objective assessment of experimental models should be de-

veloped in line with clearly defined objectives and requirements. The Experiemntal Model

Quality Assessment (EMQA) is therefore based on the following characteristics of experimental

requirements:

• Clear hypothesis;

• Dimensions and dimensional homogeneity;

• Similitude;

• Flexibility in terms of knowledge level and fabrication;

• Flexibility with the aspect of instrumentation;

• Repeatability and validity;

• Observation trends in the data, e.g. linearity;

• Applicability.

In the field of engineering, various models are available for abstract representation. The lim-

itations and difficulties associated with constructing these models are apparent. The EMQA

therefore includes a two-stage evaluation algorithm. After the objective experimentation is

defined, a qualitative assessment takes place in the first stage in order to reduce the number of

models. These are then quantitatively evaluated in the second stage of the EMQA.

4.3 Qualitative Assessment

Because of the need to rapidly produce reliable information, qualitative methodologies for

quantifying uncertainty are seeing increased use in laboratories. Qualitative methods also have

important advantages such as lower cost, speed, simplicity, or the minimisation of uncertainty

caused by delays between sampling and analysis. In order to ensure that the method is fit for its

purpose, typical performance characteristics such as accuracy, robustness, measurement uncer-

tainty, complexity, and reliability must be known. Qualitative uncertainty is acknowledged, but

most research on the quality of models has focussed on analysing quantitative uncertainty such

as model parameter uncertainty, model uncertainty, and natural randomness [12, 13, 14, 15].

Few studies have discussed qualitative uncertainties [106, 107]. One example is Bayes’ theorem,
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which was used to evaluate the quality of experimental models [105]. Among these studies, the

discussion of qualitative uncertainty is limited. However, consideration of qualitative uncer-

tainty is important for estimating the interior states of a system and promoting careful decision

making [90]. To foster a complete understanding and reduce uncertainty, both quantitative

and qualitative uncertainties need to be estimated concurrently. Unfortunately, in most cases,

qualitative uncertainty has been neglected.

The methodology for qualitatively characterizing the uncertainty of the EMQA consists of

two basic steps:

• Specification of uncertainty sources;

• Qualitative characterization of uncertainty.

The sources of uncertainty in experimental model are described in section 3.2. The nature

and extent of the qualitative characterisation of these sources of uncertainty depend on the

objectives of the EMQA and the appropriate form of output for its intended purpose. Prior to

developing an assessment, its intended purpose must be clearly formulated.

The qualitative characterisation of uncertainty entails qualitatively evaluating the level of

uncertainty of each specified source, defining the major sources of uncertainty, and qualitatively

evaluating the appraisal of the knowledge base of each major source. The extent to which each

item is considered depends on the nature of the relevant database and the purpose of the

EMQA. The objective is to identify the sources of uncertainty that are most influential in

determining the outcome of EMQA. Expert judgment is required to determine the qualitative

relationship between sources.

If the magnitude of uncertainty is low and the values needed for the assessment are known,

it was hypothesised that large changes within the source of uncertainty would only have a small

effect on the results of the assessment. A designation of medium implies that a change within

the source of uncertainty is likely to have a moderate effect on the results and that the values of

the data sets needed for the assessment are unknown (completely or partially). A designation

of high implies that a small change in the source would have a large effect on results and that

the values of the data sets needed for the assessment are unknown.

The overall characterisation and evaluation of uncertainty of structural steel testing model

are described in section 5.2 and the qualitative evaluation of tensile properties of steel is

presented in Tab. 4.1. Where considerable variation of components prevented collection, a

possible range (e.g. medium–high) was given. Before the sources of uncertainty can be assessed,

low, medium, and high variation must be defined.

Based on this qualitative evaluation, it is clear that the factors influencing tensile steel
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Table 4.1: Qualitative assessment of influence of specimen size, orientation, strain rate with

rectangular cross-section on the tensile properties of hot rolled structural steels

Influence parameter on tensile properties

Mechanical properties L0 b0 t0 L0/b0 b0/t0 Orientation Strain rate

Modulus Low Low Low Low Low High High

Yield strength Low Low Low Low Low Medium Medium

Tensile strength Low Low Low Low Low Medium Medium

Elongation at maximum force High High High High High High High

experimental model are much more complex than those described in the conceptual model.

However, because of limited data, simplification was required. More detailed information on

the underlying EMQA and a description for each of the judgments is presented in Tab. 4.1. The

EMQA hypothesis based on EM complexity and data quality is presented in Fig. 4.1.

 

Figure 4.1: Direction of interaction data quality, EM complexity, and the statistical effect on

EM

4.4 Quantitative Assessment

EMQA and data analysis can be of great value when attempting to draw meaningful results

from a large body of qualitative data. One of the most intriguing and persistent problems in

the evaluation of measurement models and data is how to combine the results obtained from

several measurements of the same quantity. Here the problem is extracting a good estimate
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of the quality from the data. Most often, any kind of mean will do, and different means

(e.g. unweighted and weighted) will generate similar values. The big question, however, is

how to estimate the uncertainty of the respective mean. For EMQA, a reasonable estimate of

uncertainty will need to account for the bias observed, and this task requires an appropriate

mathematical model as a basis for EMQA. Depending on the experimental model and data

evaluation techniques, uncertainty estimates may vary considerably. The terms agreement,

reliability, reproducibility, and repeatability are also used with varying degrees of consistency.

These may be useful parameters comparing two different methods. Thus, focus is on developing

a methodology to quantitatively assess the quality of experimental results. The exemplary

implementation is the aim of GRK 1462 Phase II. Furthermore, quantitatively assessing the

behaviour and performance of materials is essential for the quality and reliability of products.

Once developed, measurement methods, would then be used on a range of materials in order

to prove and improve the methods, thereby leading to a number of activities:

• Assessment of the quality of the measurements (accreditation and traceability);

• The validation of the method;

• Harmonization;

• Prediction.

The proposed quality factors are summarised in Fig. 4.2. The set of quality factors together

incorporate the needs of all experiments and define a complete picture of the quality of the

experimental model. The quality factors defined may be used as criteria for evaluating the

quality of individual experimental models and comparing alternative representations. The

definitions of the quality factors are:

• The evaluation of measurement uncertainty is necessary to report the quality of a mea-

surement together with the value of a measurement;

• Sensitivity analysis is an important part of metrology, particularly for evaluating mea-

surement uncertainties;

• Robustness has great potential in the area of low cost and high quality experimentation;

• Reliability relates the magnitude of the measurement error in observed measurements to

the inherent variability in the ’error-free’, ’true’, or underlying level of the quantity (terms

are used synonymously) between subjects.



4.4. Quantitative Assessment 68

 

Figure 4.2: Model quality factors based on Keitel [26], Rueter [27], and Motra et al. [105]

4.4.1 Uncertainty Analysis

Probability distributions are the preferred way of expressing measurement uncertainty. Typi-

cally, such a distribution is the result of statistical inference based on a statistical model that

expresses how experimental data relates to the measurand.

In section 2.1.2, it was stated that uncertainty can be regarded as a quantitative indication

of the quality of a physical model with the aim of assessing the measurement uncertainty of

entire experimental model (see section 3.2). Sections 3.2.1, 3.2.2, and 3.2.3 describe three ap-

proaches to calculating measurement uncertainty µ(y) based on the propagation of distribution

functions. This is intuitively correct; if several experimental models of the same quality are

available, the with a smaller uncertainty will be better than the others.

4.4.1.1 Weighted Calculation for Quality Assessment

The criteria of a technical system are not equally important. Depending on the specific re-

quirements, the criteria may vary. The total experimental measurement uncertainty UE(y) is

calculated according to Eq. 3.15, Eq. 3.26, Eq. 3.34, and Eq. 3.78. In this section, the EMQA of
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model j is defined depending on its uncertainty and the model with the lowest uncertainty at

each parameter combination η:

EMQA(η) =
min (UE(η))

UE(η)
. (4.1)

4.4.1.2 Experimental Models Quality Assessment

In the EMQA, there are many sources of measurement uncertainty; the influence of these should

be considered. However, it is currently difficult to quantify the effect of the sources of uncer-

tainty for all PMs. When quantifying the quality of the model, it is assumed that the EM with

the lowest total uncertainty corresponds to the highest quality. Regarding the uncertainty and

uncertainty range in Tab. 4.2, all models are evaluated equally according to Eq. 4.1 i.e. quality

of Model 1 was higher than that of Models 2 and 3. This is because the uncertainty and scatter

interval were lower than these models.

Table 4.2: E-Modulus EM quality for steel S355 [11]

Model Mean value [GPa] Uncertainty [%] Scatter range [GPa]

Model 1 210.80 8.90 190.70–234.20

Model 2 208.50 12.50 190.30–249.40

Model 3 209.80 11.30 193.70–252.50

Several experimental models should be comparared to determine which is most likely to

represent the best quality. The uncertainty for the models as well as confidence interval is

obtained using the GUM, Bayesian, and MCM methods. The total measurement uncertainties

of several experimental models (1, 2, 3, and 4) associated with estimated value of the tensile

strength of steel are listed in Tab. 4.3. The data and related experimental models are presented

in section 5.2. Based on the data presented in Tab. 5.2, it is clear that model 4 and the uncer-

tainty estimated using MCM are smaller than the other methods. The methods for calculating

measurement uncertainty are compared based on the uncertainty in the experimental model.

Probability distribution is the preferred method for expressing measurement uncertainty. Such

a distribution is typically the result of a procedure for statistical inference based on a statistical

model that expresses how experimental data relates to the measurand.

4.4.2 Sensitivity Analysis

Sensitivity analysis is another way of analysing individual measurement scenarios in detail

to determine the influence of a single quantity on the overall measurement uncertainty. For
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Table 4.3: Comparison of the results of the expanded uncertainty for the tensile strength using

GUM, Bayesian and MCM

Estimates [MPa] Total uncertainty [MPa]

Model GUM Bayesian MCM GUM Bayesian MCM

Model 1 493.18 492.22 492.28 10.12 10.78 10.51

Model 2 487.87 487.31 487.09 11.04 11.90 11.10

Model 3 489.09 488.73 488.93 10.15 9.00 9.60

Model 4 490.20 491.33 492.07 10.10 10.00 9.68

sensitivity analysis, sensitivity coefficients are the key quantities that have to be evaluated.

They are determined and assembled using the different methodologies described in section 3.4.

When multiplied by the variation of the corresponding input parameter, they will quantify

the influence on the targeted quantities. The results of the different approaches must now be

analysed in practice, advanced real life measurement scenarios must be applied. It would also

be interesting to implement and compare various other approaches.

In this thesis, some good practices in performing a SA associated to the evaluation of mea-

surement uncertainty have been identified. In the application examples, the quality assessment

is based on an uncertainty budget associated with the evaluation of measurement uncertainty.

Sample calculation of uncertainty sources (Type B) are shown in Tab. 4.4 for yield strength

determination. Other sources of uncertainty (e.g. extensometer, gauge length of specimen, and

repeatability), which have a sensitivity coefficient of 1.00 are not included in this table. From

Tab. 4.4, it can be seen that the area of specimen is the main factor of total measurement un-

certainty in yield of strength. The sensitivity indices of input parameter are nearly similar for

all sensitivity approaches. Indeed, all three approaches can be used to determine measurement

uncertainty.

Table 4.4: Result of sensitivity indices for Yield strength of S255 steel [105]

Source of Sensitivity coefficient

uncertainty GUM OAT Sobol’

[-] [-] [-]

Force 0.44 0.43 0.45

Mean area 0.66 0.67 0.65
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4.4.3 Reliability Analysis

Reliability relates the magnitude of the measurement uncertainty in observed measurements

to the inherent variability in the ‘error-free’, ‘true’, or underlying level of the quantity be-

tween subjects. These measures of variability can be expressed as standard deviation (σ), and

reliability is formally defined as:

λ =
V ar(X)

V ar(Y )
=

σ2
x

σ2
x + σ2

u

=
σ2
x

σ2
y

(4.2)

where Xi: True value, Yi: Measurement of X, Ui: measurement uncertainty.

If reliability is high, measurement uncertainties are smaller than the true difference between

subjects. The subjects can thus be clearly differentiated based on the uncertainty-prone mea-

surements. Conversely, if measurement uncertainty is larger than the true difference between

subjects, reliability will be low because difference between the measurements of two subjects

could be attributed to the uncertainty rather than a genuine difference in the true values.

The EMQA is defined by its reliability with the maximum reliability at each parameter com-

bination:

EMQA(η) =
max (λ(η))

λ(η)
. (4.3)

The measure of EMQA is a reference criterion for comparing the quality evaluation of dif-

ferent experimental models. The experimental model with the highest quality is recommended.

Furthermore, the determined total uncertainty and reliability of the experimental output of

each model can be considered in experimentation for estimating model parameters and validat-

ing a simulation model.

All theoretical background related to reliability is explained in section 3.5. This thesis not

only considers the reliability of the output data but also the reliability of the measuring instru-

ments. This thesis discusses how to express the reliability of the measurement referring to the

concept of metrological traceability and the associated measurement uncertainty

4.4.4 Robustness Analysis

The analysis of uncertainties is related to the robust experimental design and the reliability

of experimental model and data [108, 109, 110]. With a robust experimental design, is the

system is less sensitive to small variations in these parameters. The Tahuchi [23] method

is implemented for the tensile steel test to select the best input parameter. The detailed

methodology is described in section 3.6. The optimal locations of sensor under parametric

uncertainty should be studied in the reference object (i.e. concrete pole). In contrast, because

of limited time and man power, the location of sensor in the concrete poles shown in section 6.3
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is decided on the basis of experience and expert knowledge. Research on the optimal location of

the sensor in monitoring models is being conducted on GRK 1462. At the end (2017) of GRK

1462, the methodology for the optimal locations of sensor under uncertainty will be developed.

4.4.5 Complexity and Cost

The quality of the EM results not only depends on the quality of the input data but also on the

quality of the experimental structure. In general, highly complex models should have a lower

uncertainty. This means that if error-free input quantities are available, highly complex models

should perform better than simplified models. In contrast, in experimental models, cumulative

uncertainty increases with the increasing amount of data or number of PMs, which is clearly

shown in Fig. 2.2 and Fig. 3.14. These figures can be used to indicate the quality and complexity

of the EM. Therefore, optimisation of EM is necessary in order to obtain the minimum number

of PMs with the minimum total uncertainty. The measure is based on an entropy function.

Choice complexity is the mean uncertainty or randomness of the chosen PMs, which can be

described by a function Km in the following from:

Km(pi1, pi2, ..., piMi) = −k
Mi∑
j=1

pijlogpij (4.4)

where, PMij is the occurrence probability of a state j in the random PMs i, j ∈ [1 PMi]. k

is a constant depending on the base of the logarithm function chosen, if log2 is selected, k = 1.

Costs are a relevant factor in considering methodologies because of the effects of low quality

data on resource consuming activities. The cost of data quality is the sum of the cost of data

quality assessment and improvement activities, also referred to as the cost of the data quality

programme and the cost associated with poor data quality. The cost of poor quality can be

reduced by implementing a more effective data quality programme, which is typically more ex-

pensive. Therefore, by increasing the cost of the data quality programme, the cost of poor data

quality is reduced as shown in Fig. 3.14. Thus, the methodology uses cost as a second objective

for optimizing measurement systems. The cost of a measurement system is computed to be

the sum of PMs costs and the expenses related to testing equipment, such as data recording

system in the case of long term monitoring system, this concept is shows in Fig. 4.3.

Because of limited computing resources, complexity, and engineering costs, EM can currently

only be combined to a limited degree. This approach is evaluated based on the experienced

and expert’s knowledge. In this thesis, EM design methodology based on the expected iden-

tifiability metric optimises the configuration of measurement systems with respect to cost and

performance criteria. Indeed, EM optimisation is performed according to criteria: cost and

number of PMs. Both objectives need to be minimised. Results are presented in Fig. 4.3.
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Figure 4.3: Measurement system design multi-objective optimization between number of PMs

(complexity) and cost

4.5 Evaluation Criteria

Various quality measures have been used to compare the performance of the different experi-

mental models. logUE1 and logUE10 are the log probabilities of selecting the EM as the best

model among the all possibilities of EM. Suppose the best scoring confirmation xi has the EM

rank of Yi in n output confirmation, then the log probability is given by:

logUE1 = log10

(
Yi
n

)
for logUE10 : Yi = min[Y i, ..., Y10]. (4.5)

The weighting factor for the output of EM is evaluated by input quantities over reasonable

ranges for the different weighting factors. The measurement uncertainty is evaluated based

on the different methods. Several alternative sensitivity analysis strategies were investigated.

Measurement uncertainty using GUM, Bayesian, and MCM are compared to the different me-

chanical properties of EM. Different strategies of sensitivity analysis (GUM, OAT and Sobol’)

examine the influence of an individual quantity or part of the model on the other quantities.

Chapters 1 and 2 discussed how uncertainty can be regarded as a quantitative indication

of the quality of a measurement. At first sight, this is intuitively correct: if two results of

the same quantity are available, the one having a smaller uncertainty will be better than the

other will. However, the uncertainty itself reveals nothing about the care put into modelling

the measurand, performing the actual measurements, and processing the information obtained.

For example, a small uncertainty may result because some important systematic effect was
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overlooked. Hence, the quality of a measurement can only be judged based on its uncertainty

if it is certain that every effort has been taken to correctly evaluate it [105]. The measurement

reliability is characterised by the confidence interval of measurement uncertainty. However,

because the correct values are also known, both the regular and random errors can be taken

into account. Hence, a safe quantity is available for the comparison of reliabilities of measuring

parameters or for the optimisation of measuring models for its evaluation. Thus, the metro-

logical analysis and – in particular, the evaluation uncertainty, reliability and robustness – can

have influence the quality assurance of EM.

4.6 Comparison Experiments

Inter-laboratory studies (comparison experiments) are conducted to ensure measurement capa-

bility for commerce, evaluate national and international equivalence of measure, and validate

measurement devices and measurement methods or standard materials. A common protocol

employed in many inter-laboratory studies is for a reference lab to prepare materials or objects

and deliver them to participating labs. The labs take measurements and report the results

to the reference lab, which performs a statistical analysis. An overarching goal of many inter-

laboratory studies is to establish a reference value for some measurand (the underlying quantity

subject to measurement).

Using the procedures described in section 3.8, it should be possible to estimate measurement

uncertainty UE according to Eq. 3.78 associated with tensile testing. A comparison is also made

using the z-score, which is explained in section 3.8.2. The z-score also depends upon the total

uncertainty. In this thesis, the model quality (MQ) of model j is defined by its uncertainty

and the model with the lowest uncertainty at each individual experimental model:

MQj = min(UE). (4.6)

The evaluation of experimental model quality is based on the total uncertainty and z-score of

the individual laboratories in the mechanical properties of materials. The model with the lowest

total uncertainty corresponds to the highest quality MQ = 1. This is assumed for the evaluation

of the quality of EM in this thesis. Models with higher uncertainty have a lower quality. The

measure of model quality MQ is a reference criterion in order to compare and evaluate different

experimental models. The model with the highest quality is recommended. Furthermore,

the total uncertainty of the experimental model for each of the models can be considered in

instrumental calibration, variation in the input quantities, quality of data analysis, quality

of recording software, and quality of data transformation of the scattering output mechanical

properties of materials.



Chapter 5

Application

5.1 General

The evaluation method developed is considered a powerful and meaningful tool for assessing

the prognostic quality of experimental models. However, this method is costly because of

the extensive probabilistic studies involved. Among the research areas in civil engineering,

this thesis will focus on the diverse research fields. This practice tests the boundaries of the

analytical validity, illuminates the credibility of the conclusions, and estimates their robustness.

Metal, concrete, and soil are tested in opposition because of the heterogeneity of materials.

Homogeneity is important because it influences the repeatability of the measurement. Repeated

measurements under equal conditions will therefore lead to variation in measurement caused by

material structure i.e. non-uniform grain size, arrangement, and micro cracks. In this research

select three types of construction and geotechnical materials, and assumed property is presented

in Tab. 5.1. It is found that the measurement uncertainty increases with the increase of the

heterogeneity of the material.

Table 5.1: Materials property and measurement uncertainty

Materials Property Measurement uncertainty

Steel homogeneous 2.5%

Concrete complex and heterogeneous 3.5%

Soil very complex and heterogeneous 10.0%
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5.2 Experimental Model Quality of Tensile Test of Steel

5.2.1 Introduction

Together with hardness and Charpy impact testing, tensile testing is one of the most impor-

tant quality control assessment methods used for product release certification of virtually all

metallic materials. Tensile data are also extensively used in the design of products as well as

for assessing the life of a component life. Knowledge of the reliability and precision of the test

method is important. Measurement standards are now also required to include an assessment

of the measurement uncertainty according to the GUM [6]and the JCGM [7].

This chapter discusses methods for evaluating the measurement of tensile mechanical prop-

erties and their respective uncertainties. The methodology has a systematic application as-

sociated with advanced metrology concepts and aims to guarantee metrological reliability of

the results of the tensile properties as well as the possibility of implementation in industrial

laboratories, research centres, and related tensile testing companies. Uncertainty in calculating

the correct values reduces their value. Calculations indicate the quality test results.

5.2.2 Review of Testing Procedure

The tensile testing procedure presented in ISO 6892-1:2009 [111] was reviewed in conjunction

with the modifications recommended by [112]. From the review, revised tensile testing proce-

dure was drafted. Electromechanical tensile testing machine of 250 kN was calibrated for both

load and displacement, and the expanded uncertainty of measurement is stated as the standard

uncertainty of measurement multiplied by the coverage factor k = 2, which, for a normal distri-

bution, corresponds to a coverage probability of approximately 95%. The tests were conducted

at room temperature, and the crosshead speed rate(ėLc) ranged from slow, middle and fast at

(ėLc) = 0.00007 s−1, (ėLc) = 0.00016 s−1 and (ėLc) = 0.00025 s−1, respectively. The details are

described in section 3.2, whereby the determination of measurement uncertainties according to

the GUM, Bayesian method and the MCM are required.

5.2.2.1 Materials and Specimen Geometry

The samples used for this study were structural steel, S235 (IPE 360 and IPE 400 section, in

longitudinal and transverse direction, as shown in Fig. 5.1) procured from European hot rolled

profile, ArcelorMittal Steel. The samples were sectioned to produce the desired specimens

according to Annex D of the ISO [111] using abrasive water cutting. Tab. 5.2 shows the chemical

composition of the S235 steel. The nominal thickness of the samples was 8.00 mm and 8.60 mm
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for IPE 360 and IPE 400 steel, respectively. Specimens, the testing apparatus, and different

strain measurement devices are shown in Fig. 5.3. Four groups of specimens were tested to

individually compare the three strain measurement techniques. The specimen length and the

gauge length were changed to reflect the procedures stated in the standard, as shown in Tab. 5.3.

The four geometries, designed as specimen ID1, ID2, ID3 and ID4 are listed in Tab. 5.4 and Fig.

Annex-B 5. The geometry of the specimen was measured and analysed using 3D laser scanner

[113, 114] and calliper. Indeed, sources of uncertainty related to measurement object as well

as measurement method were analysed. These uncertainties are considered in this section and

the quantification of these uncertainties is not trivial. These uncertainties are analysed with

mathematic model of 3D scanning measurement uncertainty considered in the quantification

of uncertainty. Results represented in Fig. 5.2 show the deviation between the 3D scanned

real part and the nominal width and thickness of samples. The Vernier calliper measures data

deviation that is larger than 3D scanning. The focus of this thesis was not to quantify of all

the error sources in 3D scanning and Vernier calliper but rather to develop a methodology for

assessing the validity of the strain measurement by systematically accounting for the various

sources of uncertainty and error, see Figs. Annex B 1-4.

Table 5.2: Chemical composition of steel S 235: According to Stahlwerk Thüringen, Arcelor-

Mittal (Schneldbetrieb GmbH)

Weight Carbon Manganese Silicon Phosphor Sulphur Aluminium Nitrogen

Percentage (%) C Mn Si P S Al N

Max 0.20 1.60 0.55 0.025 0.024 0.069 0.005

Min − − − − − − −

Table 5.3: Test procedure summary for group, strain device, and length

Strain Devices Sample Gauge Test Speed s−1

Length Length

(mm) (mm)

ID1(IPE360, L) Three technique 298.00 80.00 7 ∗ 10−5s−1; 1.6 ∗ 10−4s−1; 2.5 ∗ 10−4s−1

ID2(IPE360, T) Three technique 270.00 98.00 7 ∗ 10−5s−1; 1.6 ∗ 10−4s−1; 2.5 ∗ 10−4s−1

ID3(IPE400, L) Three technique 450.00 226.00 7 ∗ 10−5s−1; 1.6 ∗ 10−4s−1; 2.5 ∗ 10−4s−1

ID4(IPE400, T) Three technique 315.00 135.00 7 ∗ 10−5s−1; 1.6 ∗ 10−4s−1; 2.5 ∗ 10−4s−1

During testing, in every case, the actual measured thickness of the specimens was somewhat

larger than the nominal value, suggesting that the length measurement uncertainty was 0.08
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Table 5.4: Gauge length, width, and thickness in reduced section.

Group L0 (mm) b0 (mm) t0 (mm) L0/b0 (-) b0/t0 (-)

ID1(IPE360, L) 80.0 20.0 8.0 4.0 2.50

ID2(IPE360, T) 80.0 20.0 8.0 4.0 2.50

ID3(IPE400, L) 200.0 40.0 8.6 5.0 4.65

ID4(IPE400, T) 120.0 40.0 8.6 3.0 4.65

  

                 

Figure 5.1: Tensile specimen orientation to determine r0, and r90 in rolled sheet [115]

mm for the 3D laser scanner. Detailed description is given in Motra et al.[115, 116]. This was

true to the greatest extent while producing structural steel in transverse direction, whereby the

actual thickness was on mean 9.8% larger than the nominal value, as compared to an mean

of 5.6% larger in longitudinal direction, for IPE360 profile. However, because the calculated

values for tensile properties, presented in the following sections are taken into account for the

actual thickness of the specimen, the differences between the actual and nominal dimensions
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samples
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Figure 5.3: Testing apparatus for evaluating strain using three different strain-measuring de-

vices

will not affect the results shown.

5.2.2.2 Strain Measurement

The measurement of deformation plays an important role in establishing the mechanical be-

haviour of materials. The two properties that are measured during a tensile test are load and

displacement. The load is measured through a load cell that is installed axially in the test

machine within the load path. The accuracy and reliability of displacement measurements are

often in question because the magnitude of displacements is often small. Methods for measuring

displacement include the tensile test, which can performed using machine crosshead motion,

strain gauges, and extensometer. Machine cross head motion of electromechanical tensile test-

ing machine of 250 kN , HBM half bridge circuit, Y series strain gauge with accuracy ±25 µε

and extensometer of class 0.5 with uncertainty ±2% are used for the displacement measurement.

Extensometer is highly recommended for tensile testing steel specimen. The extensometer al-

lows for better control and achievement of the 3% turnaround point defined in the methodology

and it also allows for more accurate calculation of results based on the strain compared with

strain gauge and machine crosshead motion. A detailed description on the quality assessment
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of strain measurement technique is given in Motra et al. [115].

5.2.2.3 Residual Stresses

Similarly, residual stresses occur significantly in most structural steel members. Such stresses

usually result from differential shrinkage during cooling in the manufacture of I-profiles. How-

ever, the magnitude and distribution of residual stresses in hot-rolled members depend on the

type of cross section and manufacturing processes, and different patterns are proposed. If the

depth of a wide flange section is large, the residual stress varies parabolically. However, it is

considered constant in the web. This section investigates the influence of residual stresses on

the tensile properties of structural steel. The residual stress distributions measured using X-ray

diffraction techniques [117, 118] from the both structural steel specimens are shown in Fig. 5.4

and Fig. 5.5.
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Figure 5.4: Residual stress distribution for specimen IPE360 structural steel with specimen

width 20 mm

5.2.2.4 Strain Range Issues

In addition to the methods used for measuring strain in the tensile test, the strain range over

which both the tensile properties are determined and the modulus fit to the stress-strain curves

also influence the quality of the measurement and the calculation of the tensile properties. For

many materials, the elastic part of the stress-strain curve corresponding to Young’s modulus

may extend only to 0.1% strain. Fig. 5.6 is a schematic representation of a stress-strain curve

showing a linear region (P-Q) proceeded by a non-linear region (O-P). Modulus values tend to

fall with increasing strain range, particularly if analysis methods based on fitting a straight line

between discrete points on the curve are used, as one of these might occur in a region beyond
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Figure 5.5: Residual stress distribution for IPE400 structural steel width specimen width 40
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Figure 5.6: Schematic of the modulus fit to the stress-strain curve [122].
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5.2.2.5 Misalignment and Bending

Misalignment and bending of specimen in the test machine is a major contributor to uncertainty

and scatter in the tensile properties, and all efforts should be taken to minimize its effect by

ensuring that the test machine, loading cell, and fixtures are well aligned. off-axis loading, is

highly detrimental to accurate measurement. The effects are quantifiable if the misalignment

is known, together with the specimen dimension. These are worse in the case of thin specimen.

Alignment can be affected by the form of the specimen end-fixing. Detailed description is given

in [115, 116].

5.2.2.6 Data Analysis Techniques

Although the concept of fitting a straight line to the linear part of the stress-strain curve is

simple, in reality, a number of factors affect the modulus value calculated, including the noise

and variability in the quality of the data, the linearity of the stress-strain curve itself, and

the choice of procedures for carrying out the data fitting. In addition, data analysis software

has become increasingly important in modern dimensional measurement systems, such as 3D

scanners, vision systems, theodolites, photogrammetry, and coordinate measuring machines.

Software computations to convert raw data to reported results can be a major source of error

in a measurement system. Detailed description is given in Motra et al. [115, 116].

5.2.2.7 Reference Materials and Procedure

The use of a certified reference material as a quality check is recommended, but there is an

issue because no recognised material is available for the validating tensile properties from the

tensile test. Because of the mechanical testing characteristic, international cooperation to

develop a primary reference procedure with strict specifications and control over the testing

conditions is essential for reducing the uncertainty of the overall test procedure and improving

the comparability of the data. For the primary reference materials and procedure, the main

objective is obtaining test results with lower uncertainty.

5.2.2.8 Influence of Partial Models

In general, a proper measurement model for estimating the values of measurands subject to

indirect measurement needs to be established. The model should provide a realistic picture of

the physics involved in the measurement. The model may be either simple or complex.

For example, the modulus of elasticity (E) of a structural steel is usually determined ac-
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cording to the model:

E =
σ

ε
, (5.1)

where σ stands for stress and ε for strain. The stress is then:

σ =
F

A
(5.2)

where A is the cross section of the specimen, F is force which is measured directly with a

transducer such as load cell and the strain is

ε =
(l − l0)
l0

(5.3)

where l0 is the original distance between the strain measured. The area is evaluated according

to model:

A = bt (5.4)

where b is the width of the specimen and t its thickness. Thus, in this example, the evaluation

task has been broken down into PMs, subjected to direct measurement where F, l, l0, b, and t,

while A, σ and ε are intermediate quantities. Alternatively, one can combine these PMs into a

single model for which the input quantities are only those directly measured. This would be:

E =
Fl0

bt(l − l0)
. (5.5)

In this thesis, four models are analysed (Model 1, Model 2, Model 3, Model 4) with three

different cases (case a is the strain rate (ėLc) = 0.00007 s−1 and crosshead technique is used for

strain measurement, case b is the strain rate (ėLc) = 0.00016 s−1 and strain gauge technique

is used for strain measurement, case c is the strain rate (ėLc) = 0.00025 s−1 and extensometer

technique is used for strain measurement) and combination of other PMs.

• The measurement model of L = 298 mm, b = 20 mm, t = 8 mm, gripped ends 80 mm,

three different testing speed, longitudinal specimen orientation and strain measurement

used all three techniques, IPE360 steel (Model 1).

• The measurement model of L = 270 mm, b = 20 mm, t = 8 mm, gripped ends 66 mm,

three different testing speed, transverse specimen orientation and strain measurement

used all three techniques, IPE360 steel (Model 2).

• The measurement model of L = 450 mm, b = 40 mm, t = 8.6 mm, gripped ends 92 mm,

three different testing speed, longitudinal specimen orientation and strain measurement

used all three techniques, IPE400 steel (Model 3).

• The measurement model of L = 315 mm, b = 40 mm, t = 8.6 mm, gripped ends 80 mm,

three different testing speed, transverse specimen orientation and strain measurement

used all three techniques, IPE400 steel (Model 4).
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5.2.3 Uncertainty Evaluation

A number of documents are available to help develop an understanding of uncertainty, provid-

ing guidance and advice [119, 120, 121]. The uncertainty related to each individual PMs are

considered for total uncertainty calculation. Result of each PMs uncertainty discussed Motra

at al. [115, 116]. There were no significant differences reported in either upper yield strength

(ReH), Fig. 5.7 and lower yield strength (ReL). P-values for the ReH were equal to 0.179, 0.213

and 0.297 for extensometer, strain gauge and crosshead techniques, respectively (n=20), as

shown in Fig. 5.7. P-values for the ReL were 0.198, o.321 and 0.408 for extensometer, strain

gauge and machine crosshead strain, respectively (n=20). The specimen used in this experi-

ment had consistently flat, therefore, the single point calculation was not affected by difference

in strain measurement. It should be noted that for materials where these are not flat, ReH and

ReL will be affected when using crosshead strain because of the overshoot at 4% strain and

resulting overshoot at 0.2% and 2% strain values required for the ReH and ReL calculations.
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Figure 5.7: ReH for three different strain measurement techniques. There was no significant

difference between methods (p = 0.179 and p = 0.213 for the extensometer and strain gauge,

respectively, n = 10, for Group 4 and strain rate of 7 ∗ 10−5 s−1).

One example of PM strain measurement technique, an extensometer, is highly recommended

for testing steel specimen in accordance with determined uncertainty. The extensometer allows

for better control and achievement of the 3% turnaround point defined in the methodology. It

also allows more accurate calculation of the results compared with strain gauge and machine

crosshead motion. The bonding of strain gauges to a specimen is standard way of generating

high quality and reliable strain measurements. However, applying strain gauge is time consum-

ing and requires high levels of skill and training. Using the strain gauge technique to measure

strain in the elastic region gave reliable output. However, in the plastic region, there is no
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more bonding with specimen, reliable strain could not be provided. The machine crosshead

motion showed high variability in the strain measurement. The Young’s modulus values were

not in acceptable range. Therefore, the machine crosshead technique is not used for modu-

lus measurement techniques. The extensometer technique of measuring strain could both save

time and reduce costs, but the technique demonstrated relatively lower variability to the strain

measurement. The development of uncertainty budgets for the mechanical properties will also

help to identify particular areas of the test set-up that contribute most of the scatter and vari-

ability. The need to assure measurement quality is, therefore, a main issue to consider. The

some results are presented in Annex B. The further discussion of global model quality is based

on the total uncertainty.

For every output measure, a model dominates with the lowest or highest total uncertainty.

The model with higher quality can be assigned by the lowest total uncertainty. Tab. 5.5 shows

an example of uncertainty calculation of measurement of young modulus using strain measure-

ment data.

Table 5.5: Example uncertainty budget for the tensile modulus test: According to the JCGM

[7]

Source of Uncertainty Measured 100 x Relative Dis. Divisor 100 x µ(E)

uncertainty value uncertainty µ Type

Force, F From load calibration 0.54 N 1.00 0.54

certificate

Area, A 0.041 mm2 160.00 mm2 1.60 R
√

3 0.92

Accuracy of strain 25.00 µε 1000.00 µε 1.00 R
√

3 0.98

measurement

Modulus analysis 0.85 GPa 200.00 GPa 0.80 R
√

3 0.73

method

Repeatability of 3.00 GPa 200.00 GPa 0.95 N 1.00 1.88

E measurement

N: Normal distribution Combined standard uncertainty 2.98

R: Rectangular distribution Expanded uncertainty (k = 2, 95%) 5.97

The E-modulus, yield stress, tensile stress, and maximum tensile strain results for the IPE

360 profile and IPE 400 profile are presented and discussed in the following sections. E-modulus,

which describes the elasticity of materials, is one of the most important properties in engineer-

ing design. Here, it was calculated as the slope of a stress-strain curve in the elastic region

during tensile testing in the region of 0.0005% to 0.06% strain [111]. Fig. 5.8 shows the com-

parison of mean value of E-modulus for all specimens. As shown in Fig. 5.8, the E-Modulus
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extracted from the experimental stress-strain curve of IPE360 profile changes from 197.50 GPa

to 205.53 GPa and of IPE400 profile from 199.10 GPa to 204.83 GPa as the longitudinal and

transverse orientations, respectively. The mean of transverse specimen in this study is higher

than longitudinal value, although the difference is small (2%). The coefficient of variance is

found 0.024, which corresponds to a standard deviation of 4.81 GPa, which is summarized in

Tab. 5.7. The specimens ID1 and ID3, which have different gauge lengths, widths and thick-

nesses and strain rates, are almost the same indicating that the gauge length may not have an

effect on E-modulus, which is clearly shown in Fig. 5.8 and Tab. 5.7. Comparing the specimens

ID1 and ID2, which have the same gauge length of 80 mm with strain rate 0.00007s−1 but dif-

ferent specimen orientations, it is seen that the E-modulus in longitudinal direction has 1.0%

higher value than the transverse direction. Comparing the specimens ID1 and ID4, which have

different gauge lengths, widths and thicknesses, the variation of mean measured E-modulus is

2.5 GPa for all strain rate, indicating the effect of varying parallel length, gauge width, grip

area, and the orientation of the specimen. If the variations that occurred during machining and

testing are considered, it would be reasonable to suggest that the varying geometry does not

significantly affect the modulus of structural steel. Furthermore, it is seen that the measured

E-modulus was more dependent on the specimen orientation of structural steel, which is also

shown in Tab. 5.7.

The E-modulus measurement model quality is shown in Tab. 5.6. Analysing the measure-

ment uncertainty, a strong influence of the testing speed and strain measurement techniques is

observed. Assuming the uncorrelated input parameters, model 1 with case a shows the highest

uncertainty, which was not in the acceptable range. Therefore, the machine crosshead technique

for strain measurement is not used for modulus determination. Model 2 in the cases b and c

shows the largest uncertainty ≈ 7.00 GPa. Model 1 case c shows the highest quality of total

uncertainty 5.01 GPa. The quality of the further models is slightly lower. Hence, the quality

of PMs is necessary in order to calculate the total model quality. In addition, in model 1 case

c, the PM strain measurement and testing speed governed the lowest total uncertainty.

This section discusses the theoretical quantity and the variance of the conditional expec-

tation that is to be estimated in order to determine an uncertainty budget associated with

evaluating measurement uncertainty. First, in the case of simple measurement model (linear

or linearised, monotonic as described in section 5.2.2.8, the GUM and OAT methods are easy

and valid methods for calculating the contribution of all the input quantities to the variance.

These can be readily implemented in any software. The GUM and OAT methods are therefore

useful for performing the sensitivity index for such simple measurement models. The results

show that the GUM, OAT, and Sobol’ methods give estimate of E-Modulus in good agreement
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Figure 5.8: E-Modulus for all geometries (ID1, ID2, ID3, ID4) and strain rate (1, 2, and 3).

Table 5.6: Example expanded uncertainty for the tensile modulus test

Estimates [GPa] Total uncertainty [GPa]

Model Case a Case b Case c Case a Case b Case c

Model 1 - 197.60 200.87 - 6.55 5.01

Model 2 - 199.61 205.53 - 6.85 7.01

Model 3 - 199.10 201.00 - 5.50 6.12

Model 4 - 202.00 204.83 - 6.80 6.90

Table 5.7: Summary of mechanical properties and uncertainty values: for case b

Specimen Orientation E- Yield Tensile % Elongation % Total

modulus strength strength at maximum extension at

GPa MPa MPa force (%) fracture

IPE360 Longitudinal 200.87 ± 4.36 363.40 ± 11.34 474.32 ± 12.71 19.19 ± 1.57 33.75 ± 4.40

IPE400 Longitudinal 201.00 ± 6.61 350.67 ± 15.00 438.95 ± 13.15 19.63 ± 1.82 30.18 ± 2.97

IPE360 Transverse 205.53 ± 7.10 370.34 ± 13.60 474.85 ± 13.75 18.33 ± 0.79 28.34 ± 4.08

IPE400 Transverse 204.13 ± 6.35 351.16 ± 9.64 428.61 ± 14.12 20.60 ± 0.53 34.96 ± 4.21

(Tab. 5.8).

If the measurement model is more complex or implies any interaction effect, then the GUM

or OAT cannot deal with the second order effect. Then, variance based sensitivity method

(Sobol’) gives suitable estimation of the contribution to the variance. There are only minor

differences between the three methods, as is shown in Tab. 5.8. According to the results in

Tab. 5.8, force is the most influential parameter for the E-Modulus determination of steel with

the assumption of uncorrelated input quantities. The interpretation of these results could lead
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to the conclusion that displacement and width of specimen have less contribution to the variance

of the output. For simple measurement model, the GUM, OAT, and variance based methods

give reliable results and can be used in measurement models.

Table 5.8: Comparison of the different SA approaches [E-Modulus determination]

Parameter GUM [-] OAT [-] Sobol’ [-]

Displacement 0.048 0.041 0.047

Force 0.579 0.580 0.570

Length of specimen 0.089 0.090 0.085

Width of specimen 0.059 0.058 0.062

Thickness of specimen 0.223 0.210 0.230

The test results of the five specimens for model 1, case c tested in tensile testing machine

are given in Tab. 5.9. The calculation of measurement uncertainties of the test results using Eq.

from 3.2 through 3.15 is shown in Tab. 5.5. The force, calliper, and 3D calibration uncertainty

are taken from the calibration certificate.

The mean thickness of the test specimen using 3D laser scanner is 8.480 mm, the mean

width using 3D laser scanner is 19.764 mm, the mean maximum force is 80.608 kN and the

mean tensile strength is 480.919 MPa. The tensile strength and uncertainty in the tensile

strength are shown in Tab. 5.9 and same way Tab. 5.5 as (480.919± 11.91) MPa.

Sample calculation shows that all of the sources of uncertainty including dimensions of

tested specimen, applied forces, repeatability of test results, and related sensitivity coefficients

can be found sequentially and added to the test results as in Tab. 5.5.

Table 5.9: Tensile test results for Model 1, case ’a’ specimen

Specimen Thickness Width Cross-section Tensile force Tensile strength

No. t, (mm) b, (mm) area,A (mm2) F, (kN) (MPa)

1 8.515 19.752 168.188 84.304 501.250

2 8.439 19.873 167.712 84.044 501.120

3 8.353 19.716 163.957 74.865 456.615

4 8.582 19.851 169.210 79.940 472.430

5 8.513 19.851 169.008 79.971 473.180

X 8.480 19.764 167.613 80.608 480.919

The tensile strength measurement and calculation of elongation at maximum force model
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output associated with total uncertainty are shown in Tab. 5.10 and Tab. 5.11. Assuming

that individual uncertainty sources are uncorrelated, Model 2 case a shows the largest total

uncertainty 13.60 GPa. The tensile test model has important PMs such as dimension, testing

speed, and strain measurement technique. The total uncertainty varies in the range of 9.64

GPa...13.60 GPa. The tensile test model 4 case a shows the highest quality. Similarly, the

quality of elongation model at maximum force is also presented in the Tab. 5.11. These results

are significantly reliable than the results of measurement uncertainty was found by Lord et al.

[123], Klingelhöffer et al. [124], and Bahn et al. [125]

Table 5.10: Example expanded uncertainty for the tensile strength

Estimates [MPa] Total uncertainty [MPa]

Model Case a Case b Case c Case a Case b Case c

Model 1 459.00 470.57 480.919 12.71 12.50 11.91

Model 2 455.46 487.31 485.09 13.60 12.90 13.10

Model 3 446.13 438.73 441.93 13.15 13.00 12.60

Model 4 445.20 444.33 446.07 9.64 10.00 10.10

The tensile strength results for both structural steels are shown in Fig. 5.9. There is a

little variation between the four types of test pieces for both structural steels with respect to

the aspect ratio, as similar to the results reported above. The tensile strength value for the

specimens taken from the longitudinal and transverse directions were 470.57 MPa and 487.31

MPa of IPE360 profile for 0.00016 s−1 strain rate. A detailed description has been provided

by Motra et al. [105, 116]
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Figure 5.9: Tensile strength for all geometries (ID1, ID2, ID3, and ID4) and strain rate (1, 2,

and 3).



5.2. Experimental Model Quality of Tensile Test of Steel 90

Table 5.11: Example expanded uncertainty for the elongation at maximum force

Estimates [MPa] Total uncertainty [MPa]

Model Case a Case b Case c Case a Case b Case c

Model 1 18.85 19.37 19.33 8.86 10.64 12.01

Model 2 18.47 18.31 18.25 9.32 8.43 12.39

Model 3 19.25 20.40 19.25 4.32 7.12 11.06

Model 4 20.68 19.25 20.56 2.60 6.86 10.10

The reliability of E-Modulus model 1 case c is the highest, as is shown in Tab. 5.12. Hence,

E-Modulus Model 1 case c provides the more reliable E-Modulus value than other models. In

general, engineers do not believe that a single reliability coefficient should be used for method

comparison studies. If the reliability of two methods is to be compared, the reliability of each

method should be estimated separately by making at least two measurements on each subject

with each measurement method.

Table 5.12: Example reliability for the tensile E-Modulus test

Estimates [GPa] Reliability [-]

Model Case a Case b Case c Case a Case b Case c

Model 1 - 197.60 200.87 - 0.85 0.95

Model 2 - 199.61 205.53 - 0.83 0.91

Model 3 - 199.10 201.00 - 0.89 0.89

Model 4 - 202.00 204.83 - 0.88 0.90

5.2.4 Uncertainty Evaluation using Bayesian method

The results presented above are based on a sample size of 60. This is a relatively small sample

and certainly induces (statistical) uncertainty. In this section, the effect of sample size is

analysed. Accurate values of modulus are also necessary for obtaining reliable values for proof

stress, because inaccuracies in the slope or E-Modulus fit can give significant errors in proof

stress, particularly if the material has a high work hardening rate in the early stages of yield. In

order to evaluate the uncertainty in this estimate, or, equivalently, to assess the goodness of the

available sample size, the Bayesian paradigm will be adopted. This approach has been widely

accepted as the most appropriate to deal with statistical uncertainty [29, 32, 33, 34, 35, 36].

Because it was assumed that E-Modulus follows a normal distribution i.e. E ∼ N(µ, σ),
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where both are random variable, an estimate of E was computed using the following equation:

E = µ− 1.645σ. (5.6)

Using non-informative priors, the parameter µ is t-distributed and σ2 follows a gamma dis-

tribution. Using those distributions, a sample of E-Modulus was generated using Monte Carlo

simulation from which the mean and the standard deviation were computed. The mean of E

is 201.51 GPa and the standard deviation is 4.83 GPa, which yield a relative error of 2.40%.

Because this is smaller uncertainty than GUM method, it can be concluded that the estimate

E can be considered close to the reference value, or that the small size can be regarded as

good enough for the purpose of mechanical properties estimation. In Fig. 5.10 the probability

densities for the mean of statistical model of E-Modulus are presented. The posterior density,

calculated with Bayesian paradigm, is then orientated closer to the likelihood with a slightly

higher density.
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Figure 5.10: Bayesian probabilistic model for E-modulus.

Consider the same example again where xe = x̄ = 201.51 GPa, s2 = 25.75 GPa and r2 =

1.167. The measurement uncertainty (Type A) according to GUM gives µξ = 1.36 GPa. The

Bayesian method produces instead µξ = 1.41 GPa. Fig. 5.11 depicts the pdf Eq. 3.23, for the

values in this example.

Tab. 5.13 shows the measured modulus x (model 1 with case a, b, c), the standard un-

certainties µc(x) and the expanded (total) uncertainties U95(x) for 95% coverage probabilities.

The weighted means xW and their standard uncertainties µxw are also shown.

It may be seen that the pdfs based on the enlargements of uncertainty adequately reflect the

final collective state of knowledge. These pdfs tend to peak above those points having smaller

uncertainties, but the area under the curve over the other points is still substantial, as shown
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 Figure 5.11: The pdf for Y with normal probability model.

Table 5.13: Measured quantity, modulus, x of the pdfs fx, standard uncertainties µ(x) and

expanded (total) uncertainties U95(x) for 95% coverage probabilities; also weighted means xw

and standard uncertainties µxw.

Case E-Modulus Estimates [GPa] µc(x)[GPa] U95(x)[GPa] xw[GPa] µxw [GPa]

a - - - - -

b 197.60 2.67 4.55 198.05 1.59

c 200.87 2.63 5.01 201.15 1.80

by the 95% coverage interval encompassing all estimates. In contrast, the Gaussian pdfs with

weighted mean measured are much narrower, so that coverage intervals based on them may

unreasonably exclude some of the extreme results. It may be checked that in all three cases

the data goodness fit is calculated by the chi-square test proposed in Motra et al. [90, 105].

The distribution assumed for the output quantity Y is obviously normal, in line with the

GUM uncertainty framework, but this assumption requires confirmation using a MCM tech-

nique, for both cases of a normal or a t-distribution input uncertainty associated with the input

quantity X, as illustrated in Fig. 5.12. The influence on the output distribution is apparent,

and it clearly illustrates one of the advantages of the MCM.

Tab. 5.14 expressed the results obtained with GUM and MCM methods, as well as its com-

parison in order to validate the application of MCM. The results are presented to more than

two significant figures in order to facilitate their comparison of the JCGM [7]. Column 6 to 8 of

Tab. 5.14 show the results obtained by applying the validation procedure of the GUM. The vali-

dation of the GUM depends on whether or not the difference between the limits of the coverage

interval is larger than the numerical tolerance δ associated with the standard uncertainty µ(y).

For the applications of the MCM, the GUM is not validated. However, the endpoint difference,
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Figure 5.12: Approximate of the probability density function for the output quantity using

GUM and MCM

dlow and dhigh, are close the numerical tolerance δ = 0.05 and for one significant digit in µ(σ)

the validation status would be positive. Given that the coverage interval determined by the

GUM is more conservative than the obtained using MCM, the minor asymmetry of the MCM

result is not conclusive.

Table 5.14: Comparison of the results obtained using GUM and MCM

Method Trail E-Modulus µ(E) Interval dlow dhigh GUM validation

M GPa GPa δ = 0.05

GUM - 201.00 9.00 [200.00− 218.00] - - -

MCM 0.35 x 106 201.83 7.88 [193.95− 209.71] 0.051 0.150 No

MCM 0.50 x 106 201.67 7.41 [194.26− 209.08] 0.055 0.125 No

MCM 1.00 x 106 201.51 6.98 [194.53− 208.49] 0.055 0.105 No

Results of measurement model subjected only to random effect can be evaluated within the

existing traditional frameworks. The case of result produced by different observations, labo-

ratory measurement and of quantities expressed by experimental models involving systematic

effects also. In most piratical applications, the uncertainty intervals obtained from existing

traditional frameworks using either theory may be similar, but their interpretation is com-

pletely different. The probability distribution is obtained by performing the proposed methods

(GUM, Bayesian, and MCM) treats random and systematic with stochastic dominance on the

uncertainty propagation, which is the combined effect on output variables of the experimental

models.
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5.2.5 Inter-laboratory: Comparison Experiments

Inter-laboratory studies are conducted to ensure measurement capability for commerce, evalu-

ate national and international equivalence of measure, and validate measurement devices and

measurement methods or standard materials.

5.2.5.1 Accuracy of Mechanical Properties Determination

Eighteen laboratories were selected for the proficiency testing: Eight laboratories from Ger-

many, one from France, one From Great Britain, three from Italy, three from Austria, three

from Switzerland, and one from South Korea. All related data are taken from BAM Berlin

report [126]. The reference value is determined by BAM. All tests were performed according to

the DIN [103]. Tab. 5.15 shows the results of homogeneity testing as mean, standard deviation,

and the measurement uncertainty of all tests. Uncertainty and homogeneity were measured as

described in Section 3.8.

Table 5.15: Result of homogeneity testing

Material value Std. deviation for Uncertainty in

E-Modulus homogeneity testing material value

184.2 GPa 0.20 GPa 0.50 GPa

5.2.5.2 Results and Discussion

The expanded measurement uncertainties are determined according to the Eq. 3.78 for all se-

lected laboratories and are shown in Fig. 5.13. The calculated measurement uncertainties range

from 2.50 to 9.60 GPa, which corresponds to 1.35% to 5.21%. The median of the results is

5.30 GPa and 2.87%, respectively. It should be noted that laboratories with particularly high

uncertainty usually exhibit a high deviation from the reference value. Laboratories 1, 6, 7, 11,

and 16 found uncertainty higher than the acceptable limit. Therefore, these laboratories are

rejected for the E-modulus calculation. Thus, for the above calculated result from all labora-

tories, the E-modulus is (184.20 ± 5.21) GPa (coverage factor k = 2, confidence level 95%).

This uncertainty corresponds to 2.87%, which is technically appropriate. The evaluation of

measurement uncertainty according to existing models is possible and leads to technically ac-

ceptable results. The implementation of the computing means is complex and is only partially

meaningful for the laboratory practice.

The calculated z-score using Eq. 3.82 for tensile strength is depicted in Fig. 5.14. The z-score
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Figure 5.13: Calculated expanded measurement uncertainty for E-modulus in GPa

of laboratories 1, 6, 7, 11, and 16 have found |z| > 3 i.e. “unsatisfactory” results. This effect

may occur because of dimension measurement error and strain measurement error. Four labo-

ratories (3, 5, 9, and 15) have found z-score ≈ .0 and less measurement uncertainty. Therefore,

these laboratories showed higher proficiency and provided the higher quality data.
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Figure 5.14: Calculated z-score for tensile strength

The proficiency testing was evaluated by the participant laboratories for the accuracy of

the E-modulus and tensile strength according to the criteria of the reference value of the ma-

terial. The uncertainty calculated covered both Type A and Type B according to the GUM [6]

and the JCGM [7]. The reference value and uncertainty determined from the results or pre-

liminary investigations BAM. The analysis of the results showed that the use of extensometer

has resulted in no case to a successful outcome. Thus, a good performance is shown in these

proficiency tests. A long-term goal of the proficiency test is the observation of the competence
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of the testing laboratories during a longer period. Therefore, the renewed execution of these

proficiency tests is needed.

5.2.6 Conclusion

In the tensile test, there are many sources of measurement uncertainty, the influence of which

should necessarily be considered even though it is difficult to quantify the effect of uncertainty

sources, like strain rate, machine control modes, test piece bending, gripping methods, and so

on. One of the goals of this thesis is to make an effort to reduce uncertainty. Here, the strain

rate, strain measurement technique, and testing methods are the most sensitive parameters for

tensile testing. The strain-rate control system is recommended for testing because it should

minimise the variation of the test rates when strain-rate sensitive parameters are determined as

well as minimise the measurement uncertainty of the test results. Consequently, the reduction

in data scattering may not be expected because the strain rate depends on the mode of rate

control, and the shape of the stress-strain curve can be influenced by the strain rate. In order

to statistically analyse all individual PMs and evaluate the quality of the global model, more

time and effort are required to reduce the scattering range of data. From the above example,

the uncertainty, sensitivity, and reliability are clearly important properties for evaluating the

quality of the global model. It is found that the measurement uncertainty is the most impor-

tant model property for the proficiency testing. Establishing the robust method of proficiency

testing in material properties’ measurement is not an easy task, especially for developing a

primary reference procedure, and cooperation between standard developer and metrologists is

essential for saving time and working together effectively.

Results show that the conventional method may produce confidence levels that differ sub-

stantially from the more rigorous coverage probabilities obtained with Bayesian and MCM

methods. Moreover, the latter automatically incorporates the LPU (valid only for linear mod-

els) and does not need Welch-Satterthwaite formula in connection with the doubtful concept

of effective number of degree of freedom based on uncertainties. The advanced method of mea-

surement uncertainty calculation is therefore considered the preferred means for evaluate the

measurement uncertainty and the related concepts of coverage probability, coverage interval

and expanded uncertainty.

A framework for the determination of measurement uncertainties, sensitivity, and reliabil-

ity analysis are introduced based on the methodology described in chapter 4. A new type of

quality evaluation methodology and rank of the tensile testing model is derived, based on the

uncertainty and reliability in sections 4.4, 4.4, 4.4.2, 4.4.3 and 4.4.5. This methodology facili-

tates to use the related information of the measurement process which comprises the theoretical
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knowledge of the process including the physical and probabilistic nature.

Finally in this chapter was set out to establish simple, general rules, to decide upon the cor-

rect choice of method to perform uncertainty calculations. The existence of different methods

for uncertainty assessment that do not always agree might be seen as an unfortunate compli-

cation by some.
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5.3 Compressive Testing Model of Concrete: PCC Sam-

ples of Concrete

5.3.1 Introduction

The material properties of concrete are often a crucial factor in the structural performance of

concrete elements. The quality of properties plays a major role in ensuring that the production

of concrete remains stable and that the desired properties are maintained in order to assure the

performance of concrete in structural engineering applications.

The testing of properties of polymer modified concrete (PCC) sample is similar to the

testing of normal concrete. The metals are tested for tensile strength as opposed to PCC

and normal concrete (CC). The homogeneity of metallic materials is better than in concrete

samples. Homogeneity of PCC and CC is almost similar. Homogeneity is important because it

influences the repeatability of measurement.

5.3.2 Laboratory Testing and Equipment Properties

Laboratory testing was performed by Flohr [127]. The mechanical properties of PCC sample

of 10 cm in diameter and height of 30 cm, shown in Fig. 5.15 are measured at the age of 28, 120

days and 28, 90 days respectively. The cylinder to determine static and dynamic modulus of

elasticity has a diameter of 15 cm and a height of 30 cm, which is determined according to the

DIN [128]. The force should have constant increase over the time until the sample breaks and

is disintegrated while axial and lateral deformations are measured simultaneously. The result

is axial compressive strength i.e. stress at which the sample is disintegrated. If axial deforma-

tions are measured, Young’s modulus of elasticity can be obtained. If lateral deformation is

measured, the Poisson ratio of the sample is also obtained.

A large difficulty in implementing the presented measurement is sample non-homogeneity.

Therefore, repeated measurement in equal condition using different samples will give a variation

in measurement results caused by material properties i.e. non-uniform grain size, arrangement,

testing methods and micro cracks, and measurement uncertainty calculation. Therefore, for a

specified compressive strength of the concrete mixture should be proportioned for mean strength

not less, on mean, and no more than 10% variation [129]. Compressive test cannot be based on

only one cylinder; a minimum of two cylinders is required for each test. The importance of using

accurate, properly calibrated testing devices and using proper sample preparation procedures is

essential, because test results can be no more accurate than the equipment and procedures used.
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Figure 5.15: Loading device and experimental set-up of the compressive test [127]

Less variable test results do not necessarily indicate accurate test results, because a routinely

applied, systematic error can provide results that are biased but uniform [129]. Laboratory

equipment and procedures should be calibrated and checked periodically; testing personnel

should be trained and certified at the appropriate technical level and evaluated routinely. The

precision statement in the ASTM [130] indicates the in-test coefficient of variation for cylinder

specimen’s compressive strength made in the lab to be 2.37% and for cylinders made in the

field to be 2.87%. The determination of the dynamic E-Modulus depends on Poisson’s ratio

which is generally not known to a high degree of accuracy; a change in Poisson’s ratio from

0.16 to 0.30 reduces the computed modulus by about 11%.

Servo-Hydraulic testing Machine (SHM),is applied for testing with a maximum capacity of

630 kN using a displacement control method with a closed-loop system in order to maintain

a uniform rate of loading. The permissible error is not greater than ±0.1% of the maximum

load, which is given by manufacture document. An accuracy of ±0.1% is guaranteed from

20% of the load range selected to full load. Below 20% of the selected range, the maximum

permissible error is 0.1% of the full load reading. The SHM has cylinder of 400 mm. SHM has

both static and dynamic component load test with 0.6 kN/s loading and reloading speed and

test frequency of 30 Hz.

Strain gauge of Y series of HBM products is used to measure the strain of the laboratory
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testing with an accuracy of 1%. The resistance accuracy is given of ±0.3%, reference temper-

ature of 23◦C, transverse sensitivity of –0.1%, the reference temperature and strain of ±1.00

µm/m, the maximum elongation of ≈ 5 µm/m, the fatigue correction is given of ≤ 30 µm/m

for > 107number of load cycles, the minimum radius of curvature, longitudinal and transverse,

at reference temperature is 0.3 mm. Six strain gauges are used in each sample, in which three

are attached in longitudinal and three are fixed in transverse direction.

The sample dimensions are measured using the Vernier calliper with an accuracy of ±0.02

mm, with resolution of 0.01 mm, repeatability of ±0.02 mm, with flatness ±0.005 mm, Paral-

lelism of ±0.008 mm, and rounding accuracy of ±0.1 mm. Details of experiment and mathe-

matical models are described in Motra at al. [90].

Characteristics of PCC comprehensive carried out by Flhor [127] and CC characteristics

of concrete are studied under static and dynamic loading. Polymers (polymer-re-dispersible

power with a film formation temperature of 5◦C) based on styrene-acrylic ester copolymer.

The mixture is made up of cements of CEM I 32.5R, 2 mm maximum grain size of sand, 2–8

mm aggregate, 8–16 mm, crushed aggregate and super-plasticizer and a de-foamer is used as

additives. The mixture is according to DIN [128]. The w/c-ratio was 0.5 and p/c ratio was

0.15. Specimens were stored under 20◦C and 65% humidity, in one day and packed in plastic

tube up to the testing date.

5.3.3 Uncertainty Evaluation

The uncertainty related to the PCC compression test will be evaluated using the GUM method

[6, 7], which is described in section 3.2. Some guidelines are available to facilitate the under-

standing of uncertainty in concrete [53, 131, 132]. Both the GUM and MCM methodologies

are interspersed throughout the narrative with the objective of clarifying the EM and methods

used as well as providing concrete illustrations of how they may be implemented.

5.3.4 Discussion of Results

The mean diameter of specimen is measured 103.36 mm. The law of propagation of uncer-

tainty in diameter measurement is given in Tab. 5.16. Analysing the diameter measurement

uncertainty, a strong influence of the standard deviation and rounding of the instrument is

observed. The estimated uncertainty of sample is 0.110 mm and uncertainty contribution is

0.035 mm. Resolution and parallelism show the lower uncertainty contribution in uncertainty

calculation. The contribution of flatness and parallelism of Vernier calliper to the uncertainty
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are given by Flack [133]. Tab. 5.16 shows the uncertainty contribution of different parameters,

taking into account the sample diameter measurement. These methods are easily affected by

the correlation of the measurement.

Table 5.16: Combined Uncertainty of Diameter Measurement

Source of Estimation Std. Unc. Dis. Type Sen. Coef. Uncertainty

Uncertainty [mm] [mm] [-] [-] [mm]

Std. dev. 0.110 0.035 Student t 1 0.035

Resolution 0.020 0.006 Rect. 1 0.006

Flatness 0.005 0.003 Rect. 1 0.003

Parallelism 0.008 0.005 Rect. 1 0.005

Calibration 0.020 0.012 Rect. 1 0.012

Rounding 0.100 0.029 Rect. 1 0.029

Sample Diameter 103.36 µc(d0) 0.047

When measuring height or length, the uncertainty components are derived from the re-

peatability error of the height or length. This error is a Type A uncertainty. Tab. 5.17 gives

the standard uncertainty and uncertainty contribution in the sample height measurement. The

standard deviation shows the strong influence of the calculation of height measurement. Other

parameters (e.g. resolution and flatness) had a negligible influence.

Table 5.17: Combined Uncertainty of height Measurement

Source of Estimation Std. Unc. Dis. Type Sen. Coef. Uncertainty

Uncertainty [mm] [mm] [-] [-] [mm]

Std. dev. 3.356 0.950 Student t 1 0.950

Resolution 0.020 0.006 Rect. 1 0.006

Flatness 0.005 0.003 Rect. 1 0.003

Parallelism 0.008 0.005 Rect. 1 0.005

Calibration 0.020 0.010 Rect. 1 0.010

Rounding 0.100 0.022 Rect. 1 0.022

Sample Height 300.18 µc(h0) 0.950

Uncertainty in compressive strength strongly depends upon the force of the testing equip-

ment. The uncertainties associated with the applied force include the: uncertainty of the

measured load, uncertainty in reading display, uncertainty associated with eccentric of sample
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and uncertainty because of the angle of cap. Data for this can be obtained from research and

specified by the SHM manufacture documentation for which the value may differ as the com-

pressive strength changes. All the different types of uncertainty contribution in measurement

of compressive strength of PCC, are shown in Fig. 5.16 and Tab. 5.18. From Tab. 5.18, it can

be seen that the force has greater influence. GUM method (Tabs. 5.18 and Annex B.2) gives

the estimate µc = ± 1.159 MPa. A probabilistic symmetric coverage interval for µc, based

on a coverage factor of 1.96 (95%) of the normal probability density function was taken. The

measurement uncertainty of compressive strength at 120 days obtained 3.5% and 3.23% un-

certainty in tensile strength at 90 days. Details calculation steps of measurement uncertainty

summarised in Tab.Annex B.2.
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Figure 5.16: Uncertainties in compressive strength measurement

Table 5.18: Combined uncertainty of compressive strength measurement

Source of Estimation Std. Unc. Dis. Type Sen. Coef. Uncertainty

Uncertainty [-] [-] [MPa]

Sample Diameter 103.36 [mm] 0.35 Rect. -8.00 -0.28

Diameter [MPa/mm]

Force 318.30 [MPa] 0.08 Rect. 14.06 1.12

Compressive 30.84 [MPa] µc 1.159

strength (fc)

Uncertainty quantification of the cylinder type of polymer modified concrete (PCC) speci-

mens is summarized in Table 5.20, Figs. 5.17 and 5.18.

The contribution of uncertainty to E-modulus, µc(E), is defined as the interval about the

result of a measurement that may be expected to encompass a large fraction of the distribution

of values could reasonably be attributed to the quantity [90]. The bar chart in Fig. 5.17 shows

only the major individual components in the static E-modulus measurement of PCC. According

to the Fig. 5.18, 5.17 and Tab. 5.19, measurement uncertainty of static and dynamic modulus

is influenced by factors that can be internal, displacement measurement, applied force, height
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of sample diameter, machine diameter and sample diameter. The top five individual factors

include the axial sample displacement, applied force, height of sample, and sample diameter.

Uncertainty contribution for PCC sample of E-Modulus 25.775 GPa is equal to ±1.44GPa (i.e.

25.775±1.44 GPa).
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Figure 5.17: Uncertainties in E-Modulus of elasticity using GUM
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Figure 5.18: Sensitivity coefficient

The success of the evaluation of measurement uncertainties depends on the metrological

problem considered, being particularly relevant to the nature of the experimental models used.

Uncertainty of measurement is an essential measure of the quality of a result or testing method.

Other such measures are reproducibility, repeatability, robustness, and selectivity. The validity

of absolute measurement has little meaning unless the uncertainty of the equipment used to

perform the experiment is known. The ability to take into account the effect of correlations

depends on the knowledge of the measurement process and on the judgment of mutual depen-

dency of the input quantities. In general, it should be kept in mind that neglecting correlation

between inputs quantities can lead to an incorrect evaluation of the standard uncertainty of

the quantity.
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Table 5.19: Combined Uncertainty of E-Modulus of elasticity Measurement

Source of Estimation Std. Unc. Dis. Type Sen. Coef. Uncertainty

Uncertainty [-] [-] [GPa]

Displacement 0.07 0.001 Student t -472.0 -0.50

mm mm GPa/mm

Height of 300.10 0.435 Rect. 0.58 0.016

Sample mm mm GPa/mm

Diameter of 103.40 0.028 Rect. -2.175 -0.060

sample mm mm GPa/mm

Force 12.16 0.080 Rect. 5.64 0.45

MPa

Young’s Modulus 25.77 µ(E0) 0.598

of Elasticity

Table 5.20: Results of expanded uncertainty calculation using GUM

Properties Mean Uncertainty Reliability [-]

Diameter [mm] 103.36 2.35 0.82

Height [mm] 300.18 3.42 0.81

Comp. strength [MPa] 30.84 1.72 0.88

E-Modulus [GPa] 25.75 1.44 0.90

Creep [10−4/[MPa] 6.67 1.26 0.82

Poisson’s ratio [-] 0.25 0.015 0.84

Given the large contribution of number of samples (n) to the measured modulus and work

of uncertainty quantification, especially PCC, it is interesting to discuss experimental approach

to decrease uncertainty in n. It is important that each repeated measurement is independent,

representative, and random. This crucial structural variable must be minimised in order to

improve the quantitative measurement of PCC. The repeatability measurement uncertainty of

compressive strength by GUM model is ±0.385 MPa, Young’s modulus is ±0.561 GPa, Pois-

son’s ratio is ±0.005, creep is ±0.72*10−4/MPa, sample diameter is ±0.035 mm, height of

sample is ±0.95 mm.

Thus, a 95% confidence interval for a normal distribution of E-Modulus of 25.75 GPa on

GUM method is 24.28–27.19. This is a wide score interval, at a reliability level. The reliability

index of modulus of elasticity is 0.85 and below the acceptable limit. Therefore, this variability
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for the measurement system is not satisfactory and adequate. It is not accepted depending

upon the experimental setup, measurement method followed by the operators, or the calibra-

tion of the instruments. Therefore, a method of verification of the quality of experimental data

is necessary for the mathematical modelling of physical phenomena.

The results of measurement presented in this section are used for the calculation of PCC

properties. The GUM approach estimates the overall uncertainty via the law of transformation

of uncertainty. Each of the components of uncertainty is established and then combined to

obtain the total uncertainty. For this experiment, the main related uncertainty components

are: repeatability error, force on machine, sample diameter measurement error, sample height

measurement error, axial and lateral displacement error, and diameter of machine. Therefore,

safety factors used ranging from 1 to 2 to achieve uncertainties that are satisfactory for this

type of application. This does not mean that the measurement presented could or should have

been performed with greater accuracy.

Tabs. 5.21 and 5.22 present the results of the CC and metal samples. The obtained uncer-

tainties of compressive strength of PCC testing are 3.75%, which is not comparable with the

CC data (0.3%) on Tab. 5.21. In addition, the uncertainties on compressive strength from our

application are also higher than the rolled steel. This effect may occurs because of the increase

of deformation of PCC sample than the CC sample. Tests on PCC have shown significant large

deformation. The obtained uncertainty in E-Modulus is 2.32%, which is higher than the metal

and cold rolled steel sample presented in Tab. 5.22.

Table 5.21: Strength and standard uncertainty in testing of concrete and steel

Quantity Normal Concrete [134] Rolled Steel [125]

Stress σ 33.00 MPa 478.60 MPa

µc(σ) 0.10 MPa 2.90 MPa

µc%(σ) 0.30% 0.6%

Table 5.22: E-Modulus and standard uncertainty in tensile test

Quantity Metal [112] Cold Rolled Steel [135]

E-Modulus 210.00 GPa 207.00 GPa

µc(E) 0.70 GPa 0.85 GPa

µc%(E) 0.33% 0.41%

An alternative, more thorough, but far simpler treatment is based entirely on MCM. This

involves modelling the joint probability distribution of the input quantities, simulating a sam-
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ple drawn from it, and computing the value of E-Modulus (E) for each input (displacement,

force, diameter of sample, height of sample) in the sample, thus obtaining a sample from the

probability distribution of the output quantity. For the presented illustration, for calculation of

E-Modulus suppose that the random variables modelling the input quantities are uncorrelated

and all are Gaussian distribution.

Sampling from these four (input) distributions from M = 106 of values drawn from them

and computing a value of (E) for each input produce a sample size M from the probability

distribution of (E). Its mean and standard deviation are E = 25.623 GPa and µE = 1.432

GPa, respectively. Furthermore, these happen to coincide with the corresponding values from

the foregoing approximate analysis, based on Gauss’s formula. The 2.5th and 97.5th percentiles

of these samples define a 95% probability interval for the true value of E [24.191–27.055] GPa.

Fig. 5.19 shows the results of implementation of MCM evaluation of measurement uncertainty.

 

Figure 5.19: Probability density of E-Modulus of the PCC and 95% probability interval

5.3.5 Conclusion

For engineering properties of PCC measurement, measurement uncertainty is an important pa-

rameter to the measurement results. PCC sample exhibits different measurement uncertainties

in engineering properties from those of CC and steel. These uncertainties come from limitation

of the used instrument and transducers. The relative uncertainty contribution of measuring

diameter is 0.045%, sample height is 0.31%, which are both lower than 1%. The relative un-

certainty contribution of measurement of compressive strength is 3.75%, E-Modulus is 2.32%,

which is higher than the CC and steel samples, which is available in literature. The relative

uncertainty of Poisson’s ratio is 4.0% and standard uncertainty of creep strain is 3.69%. A

framework for quantifying measurement uncertainty in engineering properties of PCC using
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GUM and Bayesian method is presented in the chapter above.

The MCM statistics provide helpful tools for the analysis of concrete in order to update

prior information on concrete properties when additional information becomes available. In this

case, formulae were given for updating the concrete properties distribution of concrete when

additional test results are available. This new methodology is described in sections 4.4, 4.4,

4.4.2, 4.4.3 and 4.4.5. In addition to the specimen, the approved testing method, steady force,

strain measuring system, and periodically calibrated machine reduce the total metrological un-

certainty.

After this, a more sophisticated computational algorithm based on GUM and MCM statis-

tics was developed in order to enable nonlinear regression analysis of auto-correlated data,

which is of particular importance for appropriate PCC compressive models. These examples

do not at all, limit the applicability of the proposed methodology for the analysis of PCC

compressive testing models or other fields of engineering and non-engineering research.
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5.4 Experimental Model of the Triaxial Testing of Soil

5.4.1 Introduction

Soil variability is a complex attribute that results from many disparate sources of uncertainties.

The four primary sources of soil uncertainties are materials inherent variability, measurement

uncertainty, transformation uncertainty and the uncertainty of the insitu and exist conditions

related to the experimental scale. Measurement uncertainty is extracted from field measure-

ments using a simple additive probabilistic model or is determined directly from comparative

laboratory testing programmes. Traditionally, the geotechnical engineers deal with the uncer-

tainties in soil properties using learn-as-you go/observation approach. However, in recent years,

with more and more emphasis on reliability, the geotechnical engineering community is increas-

ingly agreeing that any predictions must include quantifiable measures of uncertainty. The two

soil strength parameters, friction angle φ′ and the cohesion c′ are most essential parameters for

geotechnical ultimate limit design. Many research works showed the high variability of theses

parameter [136, 137, 138]. The experimental identification of both soil strength parameters φ′,

and c′ are performed using triaxial test set-up. A strategy for calibrating different constitutive

soil models, efficiency, and reliability of the parameter identification have been worked out by

Knabe et al. [139].

5.4.2 Test Procedure for Triaxial Compression in Soils

For the present study, isotropic consolidated and drained triaxial compression tests were per-

formed on specimens that had been previously saturated, according to the DIN 18137 Part 2

[140]. The test specimens were obtained by compaction, for the same moisture content and

compaction energy, so that same bulk density was obtained. The specimens were compacted

with a diameter close to 70 mm, and a height/diameter relation close to 2 (the test standard

recommends that this relation be 1.85–2.25). The isotropic consolidation is applied under three

confining stresses: 38, 75, and 145 kPa. The test entails applying a constant cell pressure to

the consolidated soil specimen, which is loaded to failure by moving the piston into the triaxial

cell with a constant rate on the loading frame. During the testing, quantities such as horizon-

tal (radial) stress (σ3), pore pressure (u), axial force (F ), height variation (∆H), and volume

variation (∆V ) are measured. The calibration error, output error, and operator error of mea-

surement devices are taken into account for uncertainty evaluation. Some of the consolidation

stresses were repeated to reduce experimental reproducibility. The triaxial laboratory provided

automatic control of the applied cell and backpressure to an accuracy of ±1 kPa, along with
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specimen volume-change measurement to an accuracy of ±0.03 ml. The axial deformation of

the test specimen was measured using a linear displacement transducer (sensitivity of 4.97*10−3

mm/mV ), with the mobilised horizontal stress measured using a submersible 3 kN load cell

(sensitivity of 2.4 mV/V ) located inside the Perspex pressure cell. Fig. 5.20 gives an example

of the engineering application of the soil test.

 

Load 

Loading piston 

Perspex cylinder 

Slurry 

Membran

e 
Soil sample 

Filter stone 

Water Pressure 

measurement  

Sealing 

Figure 5.20: General set-up of a soil specimen inside a triaxial cell as described by the DIN

[141]

Mean stress (p), mean effective stress (p′), deviator stress (q) and effective deviator stress

(q′) can be calculated with defined major stress, cell pressure, and pore pressure:

p =
(σ1 + σ3)

2
, p′ =

σ
′
1 + σ

′
3

2
, q = q′ =

σ1 − σ3
2

=
σ
′
1 − σ

′
3

2
(5.7)

where axial stress (σ1), horizontal stress (σ3), effective axial (σ
′
1), effective horizontal stress are

related as above. (σ
′
3).

Tab. 5.23 shows the consolidation stress, mean effective stress and effective deviator stress

at failure point of triaxial test. The friction angle φ′ and the cohesion c′ of given specimen can

be calculated using the Ordinary Least Square (OLS) regression analysis [77], which is shown

in Fig. 5.21. Regarding from the failure line on the Fig. 5.21, φ′ = arcsin(tanα) = 37.76◦ and c′

= a/cos(φ′) = 13.61 kN/m2.

By employing the common method to calculate the φ′ and the c′ magnitudes, one can
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Table 5.23: Results of test for different consolidation stress

Specimen P1 P2 P3

Consolidation stress [kPa] 38 75 145

q′ at failure [kPa] 88 146 257

p′ at failure [kPa] 126 221 402
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Figure 5.21: OLS regression analysis, for the evaluation of the friction angle φ′ and the cohesion

c′

identify the mean effective and effective deviator stresses acting on the failure plane. The

effective axial (σ
′
1) and effective horizontal stress (σ

′
3) can be calculated with measured pore

pressure (u), axial stress (σ1) and horizontal stress (σ3) as the following equation:

σ
′

1 = σ1 − u, σ
′

3 = σ3 − u. (5.8)

The accurate measurement of total volume and area change as well as the mean effective

stress and effective deviator stress can be calculated as follows:

σ1 = σ3 +
F

A
; (5.9)

q′ =
F

2A
; (5.10)

p′ =
2σ3 − 2u+ (F/A)

2
; (5.11)

A =
V1 −∆Vc −∆V

H1 −∆Hc −∆H
; (5.12)

where F is the axial load, A is the effective area of specimen.
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Table 5.24: Results after application of GUM

Specimen q′[kPa] µ′q[kPa] p′[kPa] µ′p[kPa]

1 88 2.24 126 0.43

2 146 2.22 221 0.42

3 257 2.22 402 0.42

5.4.3 The Evaluation of Uncertainty

The uncertainty related to the triaxial compression test was evaluated using the GUM [6] and

the MCM [7] methods, which are described in section 3.2.

The least square estimate of the slope and intercept are 37.76◦ and 13.61 kN/m2. There

are at least three different ways to evaluate uncertainties associated with µφ′ [
◦] and µc[kPa]:

(i) least squares regression; (ii) GUM illustrated in section 3.2.1, and the GUM [6] and the

JCGM [7]; (iii) MCM illustrated in section 3.2.3 and the JCGM [7]. In the following section

the in this thesis will illustrate these alternatives and compare the corresponding results.

The standard measurement uncertainties using a MCM technique of M = 106 sample size,

φ′ and c′ are µφ′ = 0.58◦ and µc = 5.01 kPa. Similarly, from the measurement uncertainty

evaluate using GUM, µφ′ = 0.62◦ and µc = 5.08 kPa, such that the GUM framework can

overestimate the measurement uncertainty.

5.4.4 Discussion of Results

The results of the uncertainty evaluation using both approaches are presented in Tabs. 5.24 and

5.25. Fig. 5.22 shows the PDF obtained using the MCM technique as well as the PDF obtained

using the GUM with a Gaussian distribution. There are only minor differences between the

two PDFs. In the expected range and toward the tails (albeit to a smaller extent), the values of

the PDF obtained using the MCM are smaller than those obtained using the GUM. The PDF

obtained using the MCM and the high agreement between the best estimates from GUM and

MCM indicate the underlying problem. The GUM method normally used to evaluate uncer-

tainty, which is based on the linearisation of the model function, had to be modified in order

to avoid losing the uncertainty component. The standard uncertainty therefore has some slight

difference. In contrast, there is high agreement between the two results.

Applying this methodology to the data from Tabs. 5.24 and 5.25 (i.e. the pairs of points

(p′, q′) and respective uncertainties) produced the values of φ′ and the c′ shown in Tab. 5.26

and in Fig. 5.23.
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Table 5.25: Results after application of MCM

Specimen q′[kPa] µ′q[kPa] p′[kPa] µ′p[kPa]

1 88 1.19 126 0.42

2 146 1.18 221 0.42

3 257 1.18 402 0.42
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Figure 5.22: Approximation of the PDF of the output quantity φ′ obtained using the GUM

and the MCM
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Figure 5.23: Linear regression analysis with uncertainties evaluated using MCM, for the eval-

uation of the friction angle φ′ and the cohesion c′

Table 5.26: Results from the regression and MCM

— φ′[◦] µφ′ [
◦] c′[kPa] µc[kPa]

No Validation 37.92 — 14.03 —

After validation 37.92 0.58 14.03 5.01
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Table 5.27: Results of OLS regression for specimens 1 to 3 with experimental uncertainties

— φ′[◦] µφ′ [
◦] c′[kPa] µc[kPa]

After validation 37.03 0.42 18.12 2.26

An important point related to the application of the least square method is that the chi-

square value, which is based on the sum of the squares of residuals from the linear regression

is well below the 95% quantile of the chi-squared distribution for the same degree of freedom,

shown in Figs. 5.22 and 5.23. The R value was the same with different measurement uncertain-

ties. Using this method, it is assumed that the data uncertainty matrix ux adjusts to standard

deviation of the parameter. The uncertainty values u(x) and u(N) were thus inflated (Eq. 3.12).

After calculating the uncertainty associated with OLS and MCM, it should be clearly and

concisely documented so that it can be easily used. Fig. 5.23 and Fig. 5.24 show a set of (X, Y )

data, the OLS and MCM models for that data set, and the associated uncertainty interval.

The OLS regression analysis method is generally used to analyse the triaxial test data to char-

acterise φ′ and c′. This method was repeated with these experimental uncertainties, and the

results are presented in Fig. 5.24 and Tab. 5.27. The angle of friction φ′ and the cohesion c′ for

each of these three tests were calculated as well as an estimation for the experimental dispersion

of φ′ and c′.
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Figure 5.24: Expressing uncertainty intervals for the evaluation of the friction angle φ′ and the

cohesion c′

The larger metrological uncertainties in the linear regression model led to the acceptance

of the model validation with no need for an adjustment. Without the adjustment factor, the

uncertainties of φ′ and c′, resulted in lower values. For φ′ and c′, the values of direct experi-
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Table 5.28: Uncertainty and reliability of φ′ and c′

— µφ′ [
◦] Reliability [-] µc[kPa] Reliability [-]

Value 0.74 0.88 4.51 0.84

mental standard deviation were 0.74◦ and 4.51 kPa, respectively.

The analysis of the reliability of these soil strength parameters, would be high enough, as

shown in Tab. 5.28. This means that the MCM approach of calculating metrological uncertain-

ties is more reliable. Reliability parameters are highly dependent on the variation in the data

quantity and are only generalised to data with similar variation. When using a certain quantity

of data, reliability is clearly an indicator of the performance of an instrument.

Although linear regression with uncertainties based on experimental dispersion does result

in a valid linear regression model, more replicates should be used. When obtained solely using

experimental data, the uncertainties associated with the angles of friction and cohesion are

smaller than those obtained by generalised distance regression with inflated covariance matrix.

The selection of an appropriate measurement for the evaluation of measurement uncertain-

ties is, in certain circumstances, greater influence for the correctness of that evaluation with

respect to the physical reality it intends to represent. The mathematical models used as the

support of that representation may differ in the number of variables and its combinations, some

of which are particularly common in experimental science, such as ratio like model, obervation

data model and calibration model. They will all predictably introduce some degree of non

linearity or asymmetry in the output quantity whose influence needs to be studied.

Table 5.29: The choice of method to the evaluation of measurement uncertainty in experiment

Model GUM Bayesian MCM

Linear model (uncorrelated inputs) X X X

Linear model (correlated inputs) X X X

Non linear model (uncorrelated inputs) X X X

Non linear model (correlated inputs) X X X

Ratio like model � � X

Observation data model X X �
Calibration model � � X

Iterative model X X X

where the inserted symbols refer to suitable (X), conditional (�) and unsuitable (X) situations.
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Summing up the studies of three experiemntal models of different materials related to the

civil engineering, and taking into account more general classes of problem, well known and

widely published, permit the construction of the following Tab. 5.29.

In this thesis, three different approaches for constructing uncertainty intervals that each

have a clear probabilistic interpretation have been discussed. The solution approaches consid-

ered are capable of treating functional or probabilistic models to the degree of approximation

typically required in practice. However, the modelling itself constitutes a critical stage. The

choice of model dictates the solution. It is observed that, the uncertainty intervals obtained

under the different methods will often be similar numerically. Even when this is the case,

however, their interpretations are quite different from one another.

5.4.5 Conclusion

The use of OLS to obtain uncertainties associated with estimates of two parameters would

be unreliable if there were only three points without any replicates i.e. the scarcity of data.

Therefore, advanced probabilistic models account for uncertainty in soil properties by describ-

ing those properties by using PDF. The GUM and MCM are been adapted to new and improved

methods for the evaluation of measurement uncertainties. OLS overestimates uncertainties and

it is useful only for higher degree of freedom. For simple measurement, such as the triaxial

test, both methods, GUM and MCM, give reliable results. The measurement uncertainties

using GUM is slightly higher than MCM. The reason behind this is the non-linear term in the

mathematical models, and assumption of rectangular distribution. Furthermore, only first and

second moments (mean, standard deviation, and correlations) of GUM approach, of the distri-

bution describing the uncertainty associated with the participating quantities are needed but

results cannot be interpreted probabilistically in a useful way without any additional assump-

tions. Obviously, the advanced probabilistic methods might be more appropriate, especially if

one wishes to recognize that one or more of these measurement uncertainties may be based on

low degree of freedom.

The new proposed methodology provides consistent safety margins in design. Soil pa-

rameters show large and high variable uncertainties. GUM and MCM statistical probability

approaches are rigorous ways to approach a consistent safety margin. It is believed that, the

geotechnical profession should use more extensively and more routinely statistical analysis of

parameters. The determination of uncertainties in triaxial soil testing model is based in sections

4.4, 4.4, and 4.4.3. The proposed methodology is highly recommended for experimental models

that only have few degree of freedom. This methodology is recommended to explicitly address

the variability and uncertainty of highly heterogeneous materials such as soil by implementing
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probability theory and analysing metrological reliability. From the above soil example was to

summarize the approach taken in possible ways that take into account the variability and het-

erogeneity of material properties: identifying the uncertainties, gathering and classifying the

available data, and then modelling these data.

In general, MCM is relatively straightforward and can be used to probabilistically simulate

any problem for which the deterministic solution – either analytical or numerical – is known.

However, its accuracy depends upon the number of trails (N) used in the simulation process;

the Monte Carlo approach estimates their true values as the number of deterministic runs,

and approaches infinity. Because of the above, accurate probabilistic simulation using MCM

approach becomes extremely computational intensive.



Chapter 6

Application on Reference Object:

Concrete Poles Monitoring

6.1 Measurement Uncertainties on Monitoring Models

Uncertainties are abundant in structural engineering. Major sources of these uncertainties may

include uncertainties of materials properties, spatial variability, model uncertainties, and mea-

surement uncertainties. Every measurement and monitoring have some uncertainties associated

with them regardless of how carefully the measurement was made. The results of analysis based

on experimental measurements also contain uncertainty. Because uncertainty affects the use-

fulness of measurements results and decisions that might be made using them, it is important

for engineers to be able to quantify uncertainty. In fact, an inadequate consideration of exper-

imental uncertainties can seriously compromise the final design of large, complex structures.

Because the safety factors used in design of structural strength are usually larger than those

for serviceability the actual risk in loss of strength is smaller than that in serviceability. This

gives rise to the need of a reliability analysis on induced structural behaviour. The application

of experimental and monitoring data for a serviceability and reliability analysis exists in various

fields of engineering [142, 143, 144]. The most relevant question of the application of data is:

which uncertainties should be applied to the experimental and monitoring data when utilised

in a reliability and serviceability analysis? An attempt is made to answer the question in this

chapter. Several procedures can be adopted for the structural health monitoring during the

service life, which can be based on periodical control of the structural behaviour [145]. The

measurement uncertainties in strain gauge determination method is based on the GUM [6] and

the JCGM [7].

The configuration of a monitoring system can be designed to be simple, using signal-
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measurement devices to obtain data, or it can be sophisticated in order to gather additional

information. Therefore, the system of configuration mentioned here can be used in order to in-

corporate different measurement devices or to obtain correlations and trends of measurements.

Fig. 6.1 shows a comparison of three different stages. Thereby (a) Level 1 is a simple monitoring

layout to detect local and/or global maxima, (b) Level 2 is an advanced monitoring layout to

detect beside local and/or global maxima also the gradient of the specific value, and (c) Level

3a and Level 3b are stochastically based on levels 1 and 2 and can be seen as structural systems

if the individual measurement device is independent from each other [146]. In this chapter,

strain gauge is considered as measurement device.

    

Figure 6.1: Levels of monitoring configuration [146]

Strain gauge is one of the tools most often used in strain measurement owing to their appar-

ent accuracy, low cost, and ease of use; however, they are frequently misused, and the causes of

their measurement uncertainty are badly estimated [147]. There are two reasons for measure-

ment uncertainty: the first is due to the measurand, and the second is due to the uncertainty

introduced by the measuring system. It is also important to note that systematic errors have an

effect on the global accuracy of the measuring system, while random errors affect the system’s

precision and consequently its accuracy [148]. The quality of raw data involves the use of a

model of measurement to determine the uncertainty associated with the best estimate of the

value of the quality to be measured [149]. A measurement uncertainty in strain gauge according

to the JCGM [7] is explained in in section 3.3.1, 3.3.2 and 3.3.3 and is used in this section.

The uncertainty inherent in measured data or measurement, uncertainty due to the posi-

tioning of the gauges, uncertainty due to the installation used to calibrate and validate model

predictions are commonly acknowledged. However, these measurement uncertainties are rarely

included in the evaluation of model performance [150, 151]. One reason for this omission is the

lack of data on the uncertainty inherent in measured strain.

Therefore, GRK 1462 already started the installation of strain gauge during the production
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phase of the concrete poles in pre-stress steel and outer surface on the poles. The sensors are

installed in the location Oberklobikau, high-speed Deutche Bahn project (Erfurt-Leipzig/Halle

(project VDE 8.2)). The strain gauges on the tendons and reinforcing bars as well as the

temperature sensors were thus applied in the concrete core. The strain gauge was fixed at the

pre-stress tendon, as is shown on the right of Fig. 6.2, and the strain gauge fixed in a normal

steel surface (for foundation) is shown in the middle of Fig. 6.2. Both are metallic bounded

resistance strain gauges. The next strain gauge is fixed in the surface of concrete pole, which

is shown on the left of Fig. 6.2. This allows an accurate determination of the strain in the pre-

stressing steel as well as the determination of the temperature gradients in the concrete core

over time. For the middle pole (262-27), the location of each sensor is presented in Fig. 6.3. The

installation of the sensors is shown in Tab. 6.1. The positioning of the sensors was optimized

by experience and expert knowledge as well as mathematically calculating model and technical

conditions.

Four strain gauges of half bridge 120 ohm with k-factor 1.7, (type DMS LY-6/120) at strands

and four strain gauges of half bridge 120 ohm with k-factor 2.05, (type DMS LY-6/120) at pre-

stress steel were installed at 1.18 m height from foot of the pole in mast no. 262-27, which is

shown on the right side of Fig. 6.3. Each four strain gauge is installed in four directions (i.e.

north, east, south, and west) on each concrete pole. In addition, four strain gauge of half bridge

120 ohm with k-factor of 2.03 (type DMS VY 11-6/120) is located on the surface of foundation

of concrete poles. For the prevention of strain gauge from moisture and mechanical damage is

protected by rubber packing and viscous putty (AK22). These strain gauges are also installed

in four directions at a height of 0.20 m from the bottom of the poles. Furthermore, four strain

gauges of half bridge 120 ohm with k-factor 2.07 (type DMS LY-41/50/120) are installed in

four directions. All strain gauges are produced by HBM with measurement equation described

in section 3.3.1. For strain measurement, it is necessary to consider metrological uncertainty,

installation, accuracy, and the special features of the strain gauge technology.

       

Figure 6.2: Bonded strain gauge installation in (a) left: surface of concrete; (b) middle: surface

of steel in foundation and (c) right: surface of pre-stress tendon
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Table 6.1: Sensor equipment for long-term monitoring

Pole no. 262-25 Pole no. 262-27 Pole no. 262-29

8 strain gauge on reinforcement 8 strain gauge on reinforcement 8 strain gauge on reinforcement

4 strain gauge on concrete surface 4 strain gauge on concrete surface 4 strain gauge on concrete surface

4 strain gauge on foundation tube 4 strain gauge on foundation tube 4 strain gauge on foundation tube

1 temperature sensor on reinforcement 1 temperature on reinforcement 1 temperature on reinforcement

1 soil moisture 1 soil moisture 1 soil moisture

4 surface temperature

1 3D wind anemoter

1 earth pressure on foundation

1 wind speed sensor

4 accelerometer

Furthermore, in this section, the strain measurement uncertainty is derived, based on mea-

surement equation, described in section 3.3.1, observation equation, described in the section

3.3.2 and the posterior uncertainty using Bayesian updating method, described in section 3.3.3.

Detailed description is given in section 3.3.

6.2 Assigning Uncertainties for Strain Measurements

A fundamental and new methodology for the determination of probabilistic models for mea-

surement uncertainties has been introduced. However, the measurement data establish the

realizations of the process as described by the probabilistic model leading to the question,

which probabilistic model should be assigned to a measurement. The probabilistic model can

be assigned to the measurement value, which equals the reference value.

The measurement uncertainties are treated similarly as the measurement equals the refer-

ence value and is then directly replaced with the established probabilistic model.

6.2.1 Probabilistic Models for the Strain Measurement Uncertainty

For the probabilistic consideration of the strain measurement problem, distribution functions

are assigned to the variables which appear in Eq. 3.36, 3.37, and 3.38. The distribution func-

tions, together with the statistical moments define the ranges for the input values, or in other

words, the uncertainties of the input values (random variables) are defined. The random vari-

ables and the descriptive elements are presented in Fig. 6.4(a). As is evident in Fig. 6.4(b) a

different distribution was accepted for all random variables because detailed examinations are
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Figure 6.3: Concrete poles nos.(262-25 and 262-27) and potential sensor layout to be used for

future long-term monitoring

missing regarding the distribution types. The evaluation of response function was based on

the measurement equation, observation equation, and Bayesian method. The gauge factor k

is assumed to be deterministic according to TML [152]. Transverse sensitivity q and Poisson’s

ratio of gauge calibration beam ν0 are assumed deterministic variable because of the lack of

information about these factors [153]. Moreover, the Poisson’s ratio of the specimen ν is mod-

elled according to the JCSS [154]. According to the VDI [155], the specified uncertainty is

the statistical uncertainty of the mean of the strain gauge factor and a factor for the consid-

eration of systematic effects. The factor for the systematic effects fs,s is there considered as

a model uncertainty. The data and distribution information are taken from the VDI [155].

Following the principle of maximum entropy [6, 7] a rectangular distribution is assigned to the

random variable fs,s. The uncertainty model for the variation of the strain gauge factor fs,ν ,
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temperature coefficient of the gauge factor αk and tolerance of temperature variation curve εT

are assumed normally distributed, as it is derived by repeated measurements [155]. The pa-

rameters of the distribution of the variation of the strain gauge factor are calculated from the

distribution of the mean of the strain gauge factor assuming a 95% confidence interval and a

sample size of 10 strain gauges according to the VDI [155]. The probabilistic model of the zero

amplifier deviation fa,z and the amplifying deviation fa,a is assumed to follow a rectangular

distribution according to the JCGM [7] utilizing the principle of maximum entropy and the

product information data [84].

Model uncertainty is a stochastic measure of the model quality. Therefore, model uncer-

tainty is determined and evaluated within the framework of uncertainty and sensitivity analysis.

The model uncertainties for strain measurement θEmech
and θεmech

are defined with the normal

distribution and standard deviation 1 µm/m in measurement equation. Assuming that individ-

ual uncertainty sources are uncorrected, the total uncertainty of strain measurement, according

to GUM [6]. Furthermore, the random variables and the descriptive elements are represented

in Tab. 6.2. As is evident in Tab. 6.2 a normal distribution and rectangular distribution was

accepted for all random variables because detailed examinations are missing regarding the dis-

tribution types.

Table 6.2: Others source of error in strain measurement using strain sensor

Cause of errors Minimum Maximum Reference

Sensor 1.00% 3.00% [156]

Misalignment 0.00% 3.00% [157]

Linear deviation 0.03% 0.10% [158]

Creep Avoidable Avoidable [159]

Fatigue (cycle) Avoidable Avoidable [159]

Wires of sensors 0.14% 0.30% [156]

Data acquisition system 0.03% 0.05% [156]

Application 0.00% User dependent [143]

With this method, the answer function delivers a random variable for strain. Because of

there are uncertainties in the input, there are uncertainties in the result. The description of

the strain is therefore both meaningful and realistic. Because our project lacked of sufficient

real measurement, different reference strains under the same conditions as for the ordinary

conditions were used. In this work, the temperature was kept constant at 20 degrees. However,
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Figure 6.4: Concept of probabilistic modeling

in real project in concrete pole, temperature sensor was also installed. These uncertainties are

not considered in this work and the quantification of these uncertainties is not trivial; these

uncertainties will be considered in future work. Here, the methodology for the uncertainty

quantification in strain measurement with the help of measured reference strain is presented.

The parameters of the probabilistic model for other reference values than measured are linearly

interpolated.

Influence of uncertainty quantifying in result of strain measurement is efficient if uncertain-

ties belonging to the input quantities can be found. For this problem, there is a highly suitable

tool within probabilistic theory – sensitivity analysis. This delivers the participation of the

random variables, in the form of sensitivity indices in the results.
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Strain distributions measured by the strain gauges directly depend on the bounded surface

such as concrete, pre-stress steel and steel rods as well the direction of strain gauges location

such as north, east, south, and west. The output of the strain gauges bounded on the concrete

surface presented in Fig. 6.5. The mean values of strain gauge bounded on concrete surface

were, 709.50 µm/m, 1080.30 µm/m, 590.02 µm/m, and 616.05 µm/m in north, east, south

and west, respectively. Furthermore, the east direction is the direction of train running. In

addition, mean strain of strain gauges bounded in pre-stress steel were 1831.47 µm/m, 2645.82

µm/m, 2442.57 µm/m, and 4672.97 µm/m in south, west, north and east directions respec-

tively. The standard deviation of the measurement is relatively small i.e. 0.50–1.00 µm/m.

Indeed, the output results for the strain measurement shows that the recorded strain of the

steel rods bounded strain gauge 600.07 µm/m, 157.25 µm/m, 803.70 µm/m, and 802.30 µm/m

in south, west, north and east directions, respectively.

 

Figure 6.5: Output of the strain gauge on the concrete surface bounded: (a)North location, (b)

East location, (c) South location, and (d) West location

Different quality estimation techniques have been presented with a broad range of data

processing methods and it has been known that, the quality evaluation of experimental models
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may greatly vary depending on the data quality. Quantification of data quality is coupled with

the parameter identification and experimental model quality evaluation. Descriptive statistics

relies on simple statistical indicators to quantify the inherent statistical properties of data.

Thus, here presents a methodology for dealing with variability and uncertainty in a strain

measurement data set with advanced measurement-error-model.

6.2.2 Sensitivity Analysis (SA)

The objective of SA is to identify the critical input of metrological and observation based

equations and to quantifying how input uncertainty can influence outcomes. The variance

based sensitivity analysis method [40] is used to evaluate the results of the Latin Hypercube

sampling method.

The sensitivity analysis results of uncertainty in strain measurement that are based on the

measurement data are shown in Fig. 6.6. The most highly sensitive parameters measured by the

variance-based method are model uncertainties. Mechanical strain is also the most important

variable. The value of the sensitivity indices of model uncertainties and mechanical strain

gradually increase with the reference strain, which indicates that an increase of these variables

tends to decrease the reference strain. The value of the sensitivity indices of the uncertainty

of the measurement equation model and observation based amplifier strain decreases with

reference strain. The results from analysing strain sensitivity using the measurement equation

are shown in Fig. 6.7. For the present problem, the most important variables are the strain

gauge variation factor and the zero deviation factor. The sensitivity index of the strain gauge

variation factor increases with increasing values of the reference strain. This effect may occur

because an increase of the strain gauge variation factor tends to reduce the correction factor

in the measurement equation model, thereby decreasing the value of the reference strain. The

sensitivity index of the zero deviation factor gradually decreases with the reference strain. The

model uncertainty of gauge factor variation, the correction factor of the transverse strain, and

the amplifying deviation factor have a low sensitivity index, which indicates that an increase

of these variables tends to decrease the value of the reference strain.

6.2.3 Strain Measurement Uncertainty on Concrete Poles

Strain measurement models in concrete poles include the familiar measurement equation, the

observation equation, and the posterior uncertainty model. Like all models, measurement mod-

els are simplifications that facilitate studying the interplay between the participating quantities,



6.2. Assigning Uncertainties for Strain Measurements 126

 Figure 6.6: Coefficient of mechanical strain based on observation equation
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Figure 6.7: Coefficient of amplifier strain based on measurement equation

particularly those aspects that relate to the propagation of uncertainty. The standard deviation

of the posterior metrological uncertainty lies between these standard uncertainties Fig. 6.8. In

this section, the posterior metrological uncertainty is much closer to the metrological uncer-

tainty based on the observation equation than the metrological equation, although these values

still differ considerably. Theis is because the uncertainty in the observation is larger than the

uncertainty in the metrological equation is. The systematic uncertainty in the measurement

process is determined from these results. Therefore, when measuring the systematic uncer-

tainty (instrumental error), the difference is in the PDF of the metrological and observation

equations. The observation equation focusses on the relationship between the experimental

data and the measurand; this relationship can be expressed as a mathematical equation that

involves quantities that are representations or models of the data, the measurand, and the other

quantities involved. The probability density of the measurement based equation is smaller than

that of the other two methods. In many cases, the observation equation is advantageous for

the metrological problem. The posterior metrological uncertainty is closer to the distribution

based on the observation equation and has a slightly higher maximum probability density.
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Using Bayesian updating, a PDF that reflects prior knowledge of the parameters is trans-
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Figure 6.8: Probability densities of the measurement uncertainty, reference 616.00 µm/m

formed into a posterior PDF, which accounts for the uncertainty in the prior knowledge, the

experimental data, and the predictions of the numerical model predictions. The PDFs of input

quantities depend on the type of prior knowledge of each of the quantities. The likelihood

depends on the type of the data that are obtained from the strain measurement. The prior

knowledge model determines how the input quantities are integrated to obtain the posterior

marginal PDF for the output strain. Fig. 6.9 presents the prior mean, the likelihood mean,

and the posterior mean probability densities of the statistical model as well as the computed

probability densities associated with the reference strain. For a reference strain with a value

of 590.0 µm/m, the likelihood density of the mean is more peaked than the prior density. As

can be seen, the prior density has a stronger influence on the posterior distribution than the

likelihood density does. The posterior density, which is calculated with Bayesian updating, is

then orientated closer to the likelihood with a slightly higher density. The influence of prior

 

560.0 570.0 580.0 590.0 600.0 610.0
0

0.05

0.1

0.15

0.2

0.25

0.3

Reference strain  [m/m]

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 [
-]

 

 

prior

likelihood

posterior

Figure 6.9: Probability densities of the measurement uncertainty mean for reference 590.0

µm/m

information on the resulting metrological uncertainty is quantitatively higher. Consequently,
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with an increasing number of observations, which decreases the standard deviation of the mean

of the observed data, the likelihood has a significantly higher influence, and the prior density

therefore loses ground. The uncertainty ranges obtained in this study vary from 88.0 to 198.0

µm/m for the north and east locations of strain gauges bonded to concrete surfaces, respec-

tively. These uncertainties depend on the displacement fields near the target location as well

as the

6.3 Conclusions

This chapter discusses a methodology that enables the estimation of measurement uncertainties

because of bonding strain gauge in the concrete pole and reinforcing steel. Furthermore, a gen-

eral model based on the Bayesian updating and GUM framework is presented to calculate the

measurement uncertainty of a strain gauge for strain measuring system as it offers a qualitative

analysis of the principal sources of uncertainty. Different sources of uncertainty were included

in the uncertainty quantification. The posterior measurement uncertainty shows higher prob-

ability density than measurement equation and observation equation. The influence of prior

information on the resulting measurement uncertainty is higher. The sensitivity analysis shows

that the model uncertainty factor and mechanical strain are the most important influencing fac-

tors. The proposed approach for uncertainty quantification also applies to several engineering

disciplines. In general, the proposed methodology provides a fundamental framework for the

determination of metrological uncertainty in strain measurement. Conventional measurement

uncertainty analysis based on GUM cannot be straightforwardly applied to long-duration time

series data. Therefore, in this chapter new concept introduced using Bayesian updating ap-

proach and made recommendation for best practice in interpreting monitoring datasets. There

is more than one kind of uncertainty involved with measurement. It is found that, however,

that the two main factor influencing the measurement uncertainty sources are the strain gauge

variation factor and the zero deviation factor associated with the measurement or measurement

equation.

In this section will briefly describe challenges encountered at different levels. First, the

temperature sensitivity at the sensor level before and after installation, followed by the thermal

behaviour of a system itself. Optimization of location and number of sensors for strain mea-

surement, data fusion in sensors, how sensor noise is included in the measurement, sampling

and quantization of the sensor output, how an estimate of the measured is recovered from the

sampled, these are the major challenges.



Chapter 7

Conclusions and Future Scope

7.1 Conclusions

Within the scope of this doctoral thesis, evaluation methods for the quality assessment of ex-

perimental and monitoring models in structural engineering are developed and presented. The

uncertainty in the experimental and monitoring models is determined based on the different

methods. The methodology distinguishes between different probabilistic scenarios such as the

uncertainty that arises from using different methods, reliability, and the complexity of the mod-

els.

The selected research framework includes a consistent methodology for the quantitative

evaluation of experimental and mathematical/numerical models of structural engineering as

well as their interaction, and represents a significant step towards the creation of new design

principles with which the basic applicability of selected prototypical reference objects is demon-

strated. Regardless of whether the models are experimental or numerical, they are not accurate

i.e. they are not free of errors. All models contain some degree of error. In civil engineering,

the quality of experimental and numerical models must be evaluated in order to ensure safe and

robust design. The quality of numerical/mathematic models is thoroughly evaluated in Phase I

of the GRK 1462 and developed framework. Here, the quality of the numerical models heavily

depends on the definition and quality of the experiments. Thus, the focus of this doctoral thesis

is on the development of a methodology for the quantitative assessment of the quality of the

results of experiments and their exemplary implementation being an elementary component.

At the beginning of this thesis, a measurement uncertainty method was developed which

is able to handle all different kinds of measurements in the field of civil engineering. This

includes not only each kind of operator or function to build a connection between the different

influence quantities but also the treatment of complex-valued quantities and calibration prob-
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lems. The method to calculate the measurement uncertainty has to use the complete knowledge

given about the input quantities, as well as the complete knowledge about the measurement

function. Based on the analysis of different methods to express the state of knowledge about

an input quantity, probability density functions (PDFs) are used to express all available and

relevant information about the quantities. The most widely used method for uncertainty eval-

uation, accepted by the metrological accreditation organization, is the Guide for Uncertainties

in Measurements (GUM) framework. The GUM characterizes quantities using either a normal

(Gaussian) or t-distribution, which allows measurement uncertainty to be delimited by means

of a coverage interval. This method is simple and straightforward but linearisation of the GUM

model can lead to an inadequate representation of a system and unrealistic coverage intervals

can be created. Both the Bayesian and MCM approaches treat random and systematic effects

the same way for both linear and non-linear Experimental Model (EM). They are also more

flexible and better adapted to practice than GUM is. For simple EM such as tensile testing

model of steel, compressive testing of PCC concrete model or the triaxial testing model of soil,

all methods (i.e. GUM, Bayesian and MCM) yield reliable results. The measurement uncer-

tainty results using GUM were slightly higher than the others were, but the results of Bayesian

and MCM are in good agreement at 106 simulation trial. When using MCM, more time and

processing capacity are required to calculate metrological uncertainty in non-linear complex

models. Because the accuracy of the MCM result mainly depends on the number of Monte

Carlo simulations, the efficient implementation is crucial for obtaining a reliable measurement.

Furthermore, it works extremely well for both simple and complex EM. For the purposes of

civil engineering, all methods are application for uncertainty quantification. It is found that,

MCM method is useful for the scarcity of data like triaxial soil model.

It is important to report the uncertainty. For example, in this thesis, the calculated E-

Modulus uncertainty for the tensile testing of steel model was (201.00 ± 6.61) GPa using

GUM method, (201.51 ± 4.83) GPa using the Bayesian method, and (201.51 ± 5.01) GPa

using MCM method. For the compressive testing of the PCC concrete model, the calculated

E-Modulus uncertainty was (25.75 ± 1.44) GPa using the GUM method and (25.62 ± 1.43)

GPa using the MCM method. Furthermore, the uncertainty calculation for triaxial testing of

soil model for cohesion was (14.03 ± 5.01) kPa and uncertainty in friction angle was found to

be (37.92 ± 0.58)◦ using MCM. For all above calculations, the confidence level of 95%, with

the note that the reported expanded uncertainty is based on a standard uncertainty multiplied

by a coverage factor, which provides a level of confidence of approximately 95%. Therefore,

proposed methodology is work for civil engineering experimental models.

Sensitivity analysis is another way of analysing individual measurement scenario in detail
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determining the influence impact of a single quantity on the overall measurement uncertainty.

Again, this approach is relatively new to measurement uncertainty evaluation with the MCM.

In this thesis, GUM (local), OAT approaches and more advanced ones using variance-based

(Sobol’) methods are compared. It is now necessary to analyse results of the different ap-

proaches in practice applying more advanced real life measurement scenarios. Then it would

also be interesting to implement and compare more and different approaches. All approaches

fit good in material measurement testing.

In this thesis, it will be shown how reliability theory can be applied to measurement tasks.

Subsequently, it was shown as the modelling process where measurement methods influence

the reliability of measurement method and reliability of measuring instruments. Metrological

traceability to a metrological reference such as a measurement unit, a reference procedure, and

a reference material is considered fundamental in calibration and measurement. In order to

confirm the reliability of a measurement result, statement of metrological traceability chain

together with attributed measurement uncertainty is required for calibration and testing labo-

ratories. The Tahuchi method of robustness is implemented for tensile steel test for selection

of best combination of input parameters. In general, highly complex models should have a

lower uncertainty. This means that if error-free input quantities are available, highly complex

models should perform better than simplified models. Furthermore, the total uncertainty in

the EM increase with the increasing the number of PMs. In this thesis, it is tried to found the

optimal point, having the minimum uncertainty, minimum number of PMs and optimal cost

of the EM. For this purpose, the EM are optimised with respect to the minimum uncertainty,

the minimum number of PMs, and the optimal cost. It can be illustrated by the example that

the tensile testing steel model shows 0.95 reliability index for E-Modulus, 0.90 for E-modulus

of compressive testing of PCC concrete and 0.84 for cohesion of triaxial soil model.

This research aimed to develop methods for assessing quality and improving the EM. Un-

certainty is regarded as a quantitative indication of the quality of EM. Models with lower total

uncertainty have a higher quality, while model with higher uncertainty have a lower quality.

When conducted in combination, uncertainty, sensitivity, reliability and complexity analysis,

users of EM may be more informed about the confidence that can be placed in EM results. If

the information for assessing these probabilistic factors is available, it is easier to determine

the quality of the EM and thereby support a decision. For example, model 4 case a EM for the

determination of tensile strength of steel is better in quality than others models based on the

total uncertainty with minimum PM.

The inter-laboratory study of mechanical properties in the tensile test presents a fully de-

veloped approach to the problem of estimating the value of a measurand and characterizing
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the associated uncertainty. Inter-laboratory studies constitute a ‘top-down’ approach to un-

certainty evaluation that is most likely to take into account contributions from all sources of

uncertainty, including those that uncertainty budgets, in the ‘bottom-up’ approach of the GUM,

may fail to recognize or assess properly. Based on the present study measurement uncertainty

and z-scores could be suggested as the quantification of laboratory proficiency. For example,

laboratory model 9 with total uncertainty ±2.60 GPa and z-score of –0.20 is more proficient

than others for determining the E-Modulus of steel.

A framework for the determination of measurement uncertainties is introduced building

upon the successor documents of the GUM. This framework, which is elaborated on the exam-

ple of strain measurements, accounts explicitly for the assignment uncertainty of a probabilistic

model to a measurement value and for model uncertainties.

Bayesian updating derives a new type of measurement uncertainty called the posterior mea-

surement uncertainty. Both the prior and the likelihood are informative distributions as the

prior measurement uncertainty is associated with prior knowledge about the measurement pro-

cess i.e. with a measurement equation and an associated uncertainty model. The likelihood

is associated with probabilistic models of observations. This approach facilitates the use of all

metrological information, including the theoretical (i.e. physical and probabilistic) and empir-

ical knowledge of the process.

The measurement uncertainties were determined and a sensitivity analysis of the involved

models was performed. With the results of this sensitivity analysis, a monitoring system can

be designed for a minimum measurement uncertainty as the probabilistic models of the random

variables are directly linked to product specification data. The model uncertainties introduced

for calculating the measurement uncertainties can have a significant sensitivity as it is the case

for the observations based measurement uncertainty.

Consequently, measurement uncertainty is a property of the method i.e. of the measure-

ment process and measurement result. Assuming that the measurement is the main source of

uncertainty, metrological uncertainty can be estimated based on performance characteristics.

Information is obtained via the validation of experiments. In addition to assessing the quality

of EM, it is important conduct to inter-laboratory testing because this is sometimes the only

way of identifying the systematic uncertainties in the EM.

This research focussed on assessing the quality and improving the approaches of EM. The

approach presented in this thesis is feasible for assessing and improve the quality of EM in a

continuous way. In this study was to develop a methodology for determining quality of EM con-

cerning different materials related to civil engineering. Such methodology, aiming a guarantee

the metrological reliability of the results to the EM, as well as the possibility of implementa-
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tion in validation, calibration and input parameter determination of numerical/ mathematical

models and industrial laboratories, research centres, in the material testing laboratories and

monitoring work.

7.2 Future Scope

The proposed quality assessment of EM is based on experience, review of the existing un-

certainty determination methods, sensitivity, reliability, and complexity analysis. A possible

direction for future research related to assessing quality is further validated in the context of

robustness and the cost of EM.

Further case studies can be evaluated by considering different types of input distribution in

the EM and determining the uncertainty with respect to those distribution types and evaluat-

ing more quality-related attributes of the proposed methods for assessing quality. Additionally,

methods of different probabilistic factors could be studied in more details by considering differ-

ent factors, for example, software tooling, expertise, and more complex examples. Finally, the

answers to these questions as well as the allowable uncertainty level have yet to be determined.

Next proposal for future work is to use measurement systems for optical measurement of

deformation of the specimen during the experimental test. This type of measurement decreases

the interaction between the measuring system and the specimen, speeds up preparation times,

and reduces the influence of the operator on the reliability of measurement results (measurement

with strain gauges requires a highly-skilled operator). Furthermore, the influence of material

properties and other uncertainties in the simulation behaviour of the structural component

must be investigated.

Based on the present study, the classical parametric tests should also be involved in evalu-

ation of data of inter-laboratory comparisons with small number of participating laboratories.

Further studies can be developed by using Bayesian approach to the problem of estimating the

value of a measurand and characterizing the associated uncertainty. The Bayesian method of

analysing inter-laboratory data suggests three modifications, one of which is more robust to

outliers.

A framework for determination of uncertainty in the strain measurement is developed in

this thesis. Furthermore, it is necessary to investigate the robustness of optimal sensor place-

ment under parametric uncertainty considering different sensor location methodologies such as

Fisher information matrix and based on energy matrix rank optimization.

Of course, the analysis of structural reliability and the quantitative evaluation of the quality

of the hybrid experimental- numerical model used in complex structures utilization of the ap-
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proaches for determining measurement uncertainties, which is experimental/monitoring data,

which is developed in this thesis. Therefore, the uncertainties in the mechanical properties of

materials and monitoring data, the methodology developed and presented in this thesis are

rather sufficient.
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tragender Baukonstruktionen. In: Bautechnik 76 (1999), Heft 10, 921-931.

[96] Antiny, J.: Design of Experiments for Engineers and Scientists. Butterworth-Heinemann, Elsevier,

Publication, 2003.

[97] Robert, L.M., Richard, F.G.T: Statistical Design and Analysis of Experiments With Applications to

Engineering and Science. A John Wiley and Sons Publication, 2003.

[98] Sing, J.: Comparative Analysis of Robust Design Method. PhD Dissertation, MIT, 2006.

[99] DIN EN ISO/IEC 17025, Ausgabe 04.005: General requirements for the competence of testing and

calibration laboratories. Beuth Verlag, Berlin, August 2005.

[100] ISO/IEC Guide 43-1:1997: Proficiency Testing by Interlaboratory Comparisons. Part 1: Development

and operation of proficiency testing schemes. International Organisation for Standardization, Genève,
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[124] Klingelhöffer, H.; Ledworuski, S.; Brookes, S.; May, T.: TENSTAND WP4 Report - Validation of the

Machine Control Characteristics. Sept 2004.



Bibliography 143

[125] Bahn, G.W.; Kim, J.J.; Lee, H.M.; Huh, Y.H.: Establishment of traceability in the measurement of

the mechanical properties of materials. In: Metrologia, 47, 2010, 32-40.
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Teil 2: Triaxialtest. 2011.

[141] DIN 18137-2:1990-2 Baugrund, Untersuchung von Bodenproben - Bestimmung der Scherfestigkeit -

Teil 2: Triaxialversuch, 1990.



Bibliography 144

[142] Frangopol, D.M; Strauss, A.; Kim, S.: Use of monitoring extreme data for the performance prediction

of structures: General approach. In: Engineering Structures 30 (2008) No. 12:3644-3653.

[143] Frangopol, D.M.; Strauss, A.; Kim, S.: Bridge reliability assessment based on monitoring. In: J. Bridge

Engineering, ASCE 13 (2008) No. 3, 258-270.
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Appendix A: Derivatives of complex multivariate mea-

surement functions

A.1 In this annex consideration is given to the algebraically efficient determination of the

partial derivatives of first order of the measurement function f in a complex multivariate

measurement model

Y = f(X),

where,

X = (X1, ..., XN)T , Y = (Y1, ..., Ym)T ),

and

f = (f1, ..., fm)T ),

Xi denoting the complex quantity Xi,R + iXi,I , with Xi,R and Xi,I real scalar quantities, and

i2 = −1, and similarly for Yj and fj.

A.2 Let Ux denote the covariance matrix of dimension 2N X 2N associated with an estimate

x of X. Ux takes the from

Ux =


µ(x1, x1) · · · µ(x1, xN)

...
. . .

...

µ(xN , x1) · · · µ(xN , xN)


where

Uxi,xj =

µ(xi,R, xj,R) µ(xi,R, xj,I)

µ(xi,I , xj,R) µ(xi,I , xj,I)


is the covaraince matrix of dimension 2 X 2 associated with the estimates xi and xj of Xi and

Xj, respectively.

A.3 The covariance matrix

Uy =


µ(y1, y1) · · · µ(y1, ym)

...
. . .

...

µ(ym, x1) · · · µ(ym, xm)


of dimension 2m X 2m, where

Uyl,xj =

µ(yl,R, yj,R) µ(yl,R, yj,I)

µ(yl,I , yj,R) µ(yl,I , yj,I)
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associated with the estimate

y = f(x)

of Y is given by the generalized law of propagation of uncertainty

Uy = cxUxc
T
x

A.4 cx is the sensitivity matrix of dimension 2m X 2N given by evaluating

cx =


C1,1 · · · C1,N

...
. . .

...

Cm,1 · · · Cm,N


at X = x, where Cj.i is the matrix of dimension 2 X 2 of the partial derivatives of first order

of the real and imaginary parts of fj with respect to the real and imaginary parts of Xi:

Cj,i =

 ∂fj,R
∂Xi,R

∂fj,R
∂Xi,I

∂fj,I
∂Xi,R

∂fj,I
∂Xi,I


A.5 For any complex scalar quality Q = QR + iQI , consider the matrix representation of

dimension 2 x 2 for Q:

M(Q) =

QR −QI

QI QR


Then, Cj,i can be exprssedx as

Cj,i = M

(
∂fj
∂Xi

)
,

and provides the basis for an algebraically fficient means for forming the partial derivatives:

only the complex derivatives of first order of the fj with respect to the Xi need be formed.
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Appendix B: Testing and Evaluation Results

 

Figure Annex-B.1: Structured light 3D scanner configuration [114]

 

Figure Annex-B.2: Tensile specimen scanning
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Figure Annex-B.3: Projected point-distance definition
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Figure Annex-B.4: Results of the 20 mm and 8 mm thickness block scanning 11 different

points in same sample

Table Annex-B.1. Statistical calculation of 3d scanned and vernier caliper data

Mean Std.dev Variance

Scanned Vernier Scanned Vernier Scanned Vernier

Width 20 mm 20.00 20.13 0.34 0.39 0.11 0.15

Thickness 8 mm 8.60 8.633 0.14 0.11 0.02 0.01

Width 40 mm 40.20 40.35 0.22 0.26 0.05 0.07

Thickness 8.6 mm 8.79 8.85 0.31 0.30 0.10 0.09
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Figure Annex-B.5: Results of the 20 mm and 8 mm thickness block scanning 11 different

points in same sample
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Figure Annex-B.6: Probability densities of the measurement uncertainty mean of 3D scanned
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Annex-B.7:Results of thickly spayed block scanning 20 mm width, 40 mm width
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   Specimen dimension for type 1 (ID1) test piece of IPE 

360, horizontal direction                           

 

 Specimen dimension for type 2 (ID2) test piece of IPE 

360, vertical direction                                  

 

Specimen dimension for type 3 (ID3) test piece of IPE 

400, horizontal direction                 

 

Specimen dimension for type 4 (ID4) test piece of IPE 

400, vertical direction 

Figure Annex-B.8: Dimension of specimens [mm]
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Figure Annex-B.9: Dimensions of the rectangular specimen at fracture point; a0 - thickness of

the specimen before fracture; b0 - width of the specimen before fracture; au and a′u - the

minimum and maximum thickness of the specimen at fracture point respectively; bu and b′u -

the minimum and maximum width of the specimen at fracture point respectively
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Figure Annex-B.10: A systematic diagram of the stress strain curve, showing the expected

Young’ modulus value and values calculated and recorded from the tensile tests conducted
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Figure Annex-B.11: A Elongation results for three different strain measurement techniques.

The strain calculated from crosshead strain were significantly greater than the strain gauge

and extensometer (p<0.001, p=0.002, and p=0.006 respectively, n = 20)
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Figure Annex-B.12: Expressing regressing uncertainty of different stain measurement

methods, showing the expected Young’ modulus value and values calculated and recorded

from the tensile tests conducted
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Figure Annex-B.15: Percentage elongation at maximum force:two strain measurement

techniques
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Figure Annex-B.18: Effect of orientation on tensile strength
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Figure Annex-B.19: Effect of geometry and orientation on elongation at maximum force
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Table Annex-B.4: Combined Uncertainty of Compressive Strength Measurement

Measurement Source Uncer. Dis. U Dist Std. Sen. uici ui(y)2

Uncertainty Type Factor uncer. Cof.

Source u(x)i ci

Load (kN) testing up Rect. 2.58 1.73 1.11 0.94 1.04 1.088

reading um Rect. 0.19 1.73 0.11 0.12 0.01 0.0001

eccentricity ue Rect. 0.50 1.73 0.28 0.12 0.03 0.001

cap angle ucap Rect. 0.065 1.73 0.037 0.12 0.004 0.000002

slenderness us Rect. 0.00 1.73 0.00 0.12 0.00 0.00

Diameter (mm) vernier ud1 Rect. 0.10 1.73 0.577 -0.650 -0.375 0.140

Diameter (mm) vernier ud2 Rect. 0.10 1.73 0.577 - 0.650 -0.375 0.140

Constant pi rounding upl Rect. 0.0004 1.73 0.0002 - 7.786 -0.0018 0.000003

Strength (MPa) pacer urep Rect. 0.025 1.73 0.15 -1.00 0.015 0.0002

uc(y) 1.159

k 2.00

U95 2.318

fc =

[
(X ± up ± um ± ue ± ucap ± us)

(π ± upi) ∗ ((d1 ± ud1 + d2± ud2)/2)2 /4)

]
± urep

up - the uncertainty of the measured load taken as ±0.5 kN - rectangular distribution

um - the uncertainty associated with reading the testing machine ±0.5 kN - rectangular distri-

bution

ue - the uncertainty due to eccentric centering taken as ±0.258 kN - rectangular distribution

ucap - the uncertainty associated with the angle of loading ± 0.0652 kN - rectangular distribu-

tion

us - the uncertainty associated with the slenderness ratio = 0.00 - rectangular distribution

upi - the uncertainty of the constant pi due to rounding ± 0.0004 - rectangular distribution

ud1 -the uncertainty associated with the measurement of diameter 1 ±0.1 mm - rectangular

distribution

ud2 -the uncertainty associated with the measurement of diameter 2 ±0.1 mm - rectangular

distribution

The measured compressive strength of concrete is 36.84 MPa with an expanded measure-

ment uncertainty of ±2.318 MPa at a confidence level of 95% and with a nominal coverage

factor of 2.The uncertainty of measurement value shown does not include any estimate of the

effects associated with sampling or field and lab curing. Test results should be assessed using

precision in terms of repeatability and reproducibility, measurement uncertainty and effects of
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sampling and curing.

The basis of the estimates of uncertainty and the estimate of value are shown above. As-

suming that individual uncertainty sources are uncorrelated.
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