Trag- und Verformungsverhalten spezieller Verbundelemente für Holz-Beton-Verbundstraßenbrücken unter Kurzzeit-, Ermüdungs- und Langzeitbeanspruchung

DISSERTATION

zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

an der Fakultät Bauingenieurwesen der BAUHAUS-UNIVERSITÄT WEIMAR

vorgelegt von

Dipl.-Ing. Jens Müller geboren am 28/04/1982 in Friedrichroda

- 1. Gutachter: Prof. Dr.-Ing. Karl Rautenstrauch
- 2. Gutachter: Prof. Dr.-Ing. Ulrike Kuhlmann
- 3. Gutachter: Prof. Dr.-Ing. Peer Haller
- Tag der Disputation: 15/05/2014

Danksagung

Die vorliegende Dissertationsschrift entstand im Rahmen meiner fast siebenjährigen Tätigkeit als wissenschaftlicher Mitarbeiter an der Professur Holz- und Mauerwerksbau der Bauhaus-Universität Weimar.

Ganz herzlich bedanken möchte ich mich bei meinem Mentor Professor Dr.-Ing. Karl Rautenstrauch, der diese Arbeit betreute, zahlreiche Ideen anregte und stets ein offenes Ohr für die Diskussion von Problemen, Lösungsansätzen und Ergebnissen hatte. Auch für die Übernahme des Hauptreferates möchte ich mich an dieser Stelle bedanken.

Für das Interesse an meiner Arbeit sowie für die Übernahme der Koreferate bedanke ich mich ebenfalls bei Professorin Dr.-Ing. Ulrike Kuhlmann von der Universität Stuttgart sowie bei Professor Dr.-Ing. Peer Haller von der Technischen Universität Dresden.

Bedanken möchte ich mich bei allen Kollegen der Professur Holz- und Mauerwerksbau für den stets freundlichen Umgang und die positive Arbeitsatmosphäre. An dieser Stelle herausheben möchte ich Frau Antje Simon, die mir in meiner Zeit als Studierender das Forschungsfeld des Holz-Beton-Verbundes eröffnete und damit die Grundlagen für meine wissenschaftliche Tätigkeit legte. Herzlich danken möchte ich Herrn Markus Jahreis, der mich v.a. bei der Versuchsplanung und -durchführung, der fachgerechten Herstellung der Probekörper und den wöchentlichen Langzeitmessungen unterstützte. Gleiches gilt für Herrn Mike Oppel, dessen hohes Fachwissen auf dem Themengebiet der numerischen Simulation zur Lösung mancher Problemstellung innerhalb dieser Arbeit beitrug. Ebenso sei den Studierenden Tino Dannenberg, Frank Schmidt, Thomas Kirsten und Torsten Stöpel gedankt, die im Rahmen ihrer studentischen Arbeiten und/ oder Tätigkeit als wissenschaftliche Hilfskraft zum Gelingen dieser Arbeit beigetragen haben.

Ein ganz besonderer Dank gilt den Mitarbeitern der Versuchstechnischen Einrichtung (VTE) der Bauhaus-Universität Weimar unter der Leitung von Herrn Wolf-Dieter Vogler für die Unterstützung bei der Planung sowie hauptsächlich für die Durchführung der experimentellen Bauteilversuche unter statischer sowie zyklischer Belastung, die auch manchen Wochenenddienst miteinschloss.

Wesentliche experimentelle Ergebnisse der in vorliegender Arbeit vorgestellten Untersuchungen wurden im Rahmen des AiF-Forschungsvorhabens 16266 BR "Trag-, Verformungsund Ermüdungsverhalten spezieller Verbundelemente für Holz-Beton-Verbundstraßenbrücken" erarbeitet, welches durch das Bundesministerium für Wirtschaft und Technologie (BMWi) via der Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) und dem internationalen Verein für Technische Holzfragen (iVTH e. V.) als Nachfolgeorganisation der Deutschen Gesellschaft für Holzforschung (DGfH e. V.) gefördert wurde. Für die gewährte finanzielle Unterstützung sei den vorgenannten Institutionen recht herzlich gedankt.

Ein besonderer Dank gilt meinem früheren Kommilitonen und guten Freund Sebastian Böning, der als Kollege von der Professur Verkehrsbau immer den Blick des Brückenbauers in unsere zahlreichen Fachdiskussionen einfließen ließ und auf diese Weise zu mancher Problemlösung beitrug.

Für die aufwendige Korrekturlesung der gesamten Arbeit, die so manchen Rechtschreib-, grammatikalische und orthographische Fehler aufdeckte, möchte ich mich ganz herzlich bei meinem Bruder René Müller bedanken.

Ganz besonders danke ich meiner gesamten Familie, vor allem meiner Partnerin Grit Häfner, für die Unterstützung, den Rückhalt sowie das entgegengebrachte Verständnis in dieser freizeitarmen Lebensphase.

Jens Müller Weimar, 2014

Kurzfassung

Infolge der zyklischen Belastung aus dem Verkehr spielt gerade im Straßenbrückenbau die Ermüdung der eingesetzten Baustoffe eine entscheidende Rolle. Daher widmet sich diese Arbeit insbesondere dem holzseitigen Ermüdungstragverhalten des im Holz-Beton-Verbundstraßenbrückenbau einsetzbaren Verbundelementes Dübelleiste. Neben einem konventionellen und bereits praxiserprobten Verbundfugenaufbau wurde ein neuartiges, durch Polymerbeton modifiziertes, Fugendesign untersucht. Anhand von Scherversuchen unter oft wiederholter Beanspruchung wurden Ermüdungskennlinien erarbeitet, welche die Anwendbarkeit des Ermüdungsnachweiskonzeptes der Holzbrückennorm für beide Fugenaufbauten ermöglicht. In Kombination mit den Resultaten einer separaten Untersuchung unter konstanter Langzeitbelastung, einer statistischen Analyse sowie numerischen Simulationen an einem praxisnahen Brückenquerschnitt werden konkrete Bemessungs- und Konstruktionshinweise für den Holz-Beton-Verbundstraßenbrückenbau vorgestellt.

Abstract

The fatigue behaviour of the construction materials is very important, especially in bridge building due to the cyclic stress as a consequence of traffic loads. For this reason this thesis deals with the fatigue behaviour of the timber part of the stud connector, which can be used as connector for timber-concrete composite (TCC) road bridges. Beside the conventional construction of the joint a new modified design characterized by the arrangement of a layer consisting of polymer concrete (PC) was investigated. S-N-lines for both types of the connection were elaborated with the help of push-out-tests under pulsating stress. This method allows the application of the fatigue verification according to the standard for timber bridges. With the results of separate investigations under constant long-term loading, statistical analysis and numeric simulations at a practical example detailed advices regarding design and construction of a timber-concrete composite road bridge are presented.

Inhaltsverzeichnis

A	bildungsverzeichnis	/111	
Та	TabellenverzeichnisXVI		
1	Einleitung	. 1	
	1.1 Ausgangssituation und Problemstellung	. 1	
	1.2 Zielsetzung und Lösungsweg	. 2	
2	Stand der Forschung	. 3	
	2.1 Holz-Beton-Verbundkonstruktionen	. 3	
	2.1.1 Holz-Beton-Verbund im Hochbau	. 3	
	2.1.2 Holz-Beton-Verbund im Brückenbau	. 8	
	2.1.3 Wirkungsweise und prinzipielles Tragverhalten	11	
	2.1.4 Berechnungsmöglichkeiten und -modelle	13	
	2.1.4.1 Theorie des elastischen Verbundes	13	
	2.1.4.2 γ - Verfahren	13	
	2.1.4.3 Stabwerksmodell	14	
	2.1.4.4 Finite-Elemente-Modelle und weitere Berechnungsverfahren	16	
	2.1.5 Normativ anzusetzende Steifigkeiten und weitere Randbedingungen	17	
	2.2 Ermüdungsfestigkeit von Holz	19	
	2.3 Ermüdungsfestigkeit von Holz-Beton-Verbundkonstruktionen	23	
	2.4 Langzeittragverhalten von Holz-Beton-Verbundkonstruktionen	26	
	2.5 Zusammenfassung	27	
3	Experimentelle Untersuchungen zum Kurzzeit- und Ermüdungstragverhalten	2 9	
	3.1 Kurzzeitscherversuche	29	
	3.1.1 Vorüberlegungen und Randbedingungen	29	
	3.1.2 Versuchsplanung und -aufbau	31	
	3.1.3 Geometrie und Wahl der Probekörper	33	
	3.1.3.1 Serien E-K-A und E-K-B	34	
	3.1.3.2 Serie E-K-PC	35	
	3.1.4 Messverfahren und Belastung	36	
	3.1.4.1 Messverfahren und -equipment	36	
	3.1.4.2 Festlegung der Höchstlast und des Lastregimes	37	
	3.1.5 Versuchsergebnisse und Auswertung	40	
	3.1.5.1 Verschiebungsmodul und Anfangsschlupf	40	
	3.1.5.2 Bruchlasten	44	
	3.1.5.2.1 Gegenüberstellung theoretischer und experimentell gewonnener		
	Bruchlasten	48	

		3.1.5.2.2	Zugkräfte	. 49
		3.1.5.3	Photogrammetrische Auswertung	. 50
		3.1.5.4	Zusammenfassung	. 52
	3.2	Scherver	suche unter zyklischer Beanspruchung	. 54
		3.2.1 Ir	tention, Versuchsumfang und Lastregime	. 54
		3.2.2 V	ersuchsergebnisse und Auswertung	. 56
		3.2.2.1	Überblick und Dokumentation ausgewählter Versuche	. 56
		3.2.2.2	Relativverschiebungen, Anfangsschlupf und Verschiebungsmodulr	ו 62
		3.2.2.3	Schädigungsmodell	. 65
		3.2.2.4	Ermittlung einer reduzierten Verbundelementsteifigkeit auf Basis d dissipierten Energie	er . 69
		3.2.2.5	Bruchversuch und Resttragfähigkeit nach der oft wiederholten	
			Belastung	. 72
		3.2.2.6	Ermüdungskennlinien für beide Verbundfugenausbildungen	. 75
		3.2.2.7	Gegenüberstellung von Ermüdungskennlinien diverser	
			Verbundelemente	. 78
4	Exp	perimente	elle Untersuchungen zum Langzeittragverhalten	. 80
	4.1	Einführu	ng	. 80
	4.2	Langzeit	scherversuche	. 80
		4.2.1 R	andbedingungen	. 80
		4.2.2 K	lima- und Holzfeuchteverlauf während der Langzeitbeanspruchung.	. 82
		4.2.3 R	elativverschiebung unter Langzeitbeanspruchung	. 83
		4.2.3.1	Verschiebungszunahme unter konstanter Langzeitbeanspruchung	. 83
		4.2.3.2	Approximation der Verformung und Extrapolation von Kriechfaktor	en
				. 86
		4.2.3.3	Entlastung nach Langzeitbeanspruchung	. 89
	4.3	Untersuc	chungen nach Beendigung der Langzeitbeanspruchung	. 90
		4.3.1 V	erbundelementstelfigkeiten nach der Langzeitbeanspruchung	. 90
		4.3.2 B	ruchversuch und Resttragfanigkeit	. 92
	4.4	∠usamm	enfassung	. 95
5	Sta	tistische	Analyse ausgewählter Versuchsergebnisse	. 97
	5.1	Einleitun	g	. 97
	5.2	Ausreiße	problematik	. 97
	5.3	Statistisc	he Analyse mit Verteilungsfunktionen	. 99
		5.3.1 K	umulierte Häufigkeit	. 99
		5.3.2 S	tetige Verteilungen	100
		5.3.3 Z	uordnung der Zufallsvariablen zur Verteilungsfunktion	102

	5.4	Verschiebungsmoduln diverser Verbundelementtypen	105
6	Ber	messungskonzept für Holz-Beton-Verbundstraßenbrücken	107
	6.1	Nachweise in den Grenzzuständen der Tragfähigkeit und Gebrauchstauglich	nkeit 107
		6.1.1 Betonteilquerschnitt	107
		6.1.2 Holzteilquerschnitt	108
		6.1.3 Verbundelement	110
		6.1.3.1 Fall 1 – Vorholzabscheren	110
		6.1.3.2 Fall 2 – Holzdruckversagen	111
		6.1.3.3 Fall 3 – Betondruckversagen	113
		6.1.3.4 Fall 4 – Abscherversagen der Kopfbolzendübel	114
		6.1.3.5 Fall 5 – Abheben der Betonplatte	114
	6.2	Ermüdungsnachweis	115
		6.2.1 Generelles Vorgehen bei der Nachweisführung gegen Ermüdung	115
		6.2.2 Vereinfachter Ermüdungsnachweis auf Basis der Holzbrückennorm	116
		6.2.3 Verknüpfung der Forschungsergebnisse mit dem bestehenden	
		Nachweiskonzept nach Norm	118
		6.2.4 Genauerer Ermüdungsnachweis	119
7	Par	rameteruntersuchungen an einer praxisnahen Holz-Beton-Verbundstraße	enbrücke
			122
	7.1	Einführung, Randbedingungen und Vorstellung der untersuchten Konstruktion	on122
	7.2	Berechnungen mit dem Stabwerksmodell	124
		7.2.1 Berechnungsmodell und zugehörige Randbedingungen	124
		7.2.2 Lastfälle und Lastfallkombinationen	125
		7.2.2.1 Charakteristische Einzellastfälle	125
		7.2.2.2 Lastquerverteilungslinie	129
		7.2.2.3 Lastfallkombinationen	130
		7.2.3 Schnittgrößen- und Verformungsverläufe	131
		7.2.3.1 Charakteristische Schnittgrößen aus Einzellastfällen	131
		7.2.3.2 Bemessungsschnittgrößen aus Lastfallkombinationen	122
			155
		7.2.4 Variation diverser Parameter	134
		7.2.4 Variation diverser Parameter7.2.4.1 Einfluss der ermittelten Verbundelementsteifigkeiten	134 134
		 7.2.4 Variation diverser Parameter 7.2.4.1 Einfluss der ermittelten Verbundelementsteifigkeiten 7.2.4.2 Einfluss des Verbundelementkriechens 	134 134 138
		 7.2.4 Variation diverser Parameter 7.2.4.1 Einfluss der ermittelten Verbundelementsteifigkeiten 7.2.4.2 Einfluss des Verbundelementkriechens 7.2.4.3 Einfluss der Schädigung infolge zyklischer Beanspruchung 	134 134 138 139
		 7.2.4 Variation diverser Parameter	134 134 138 139 5140
		 7.2.4 Variation diverser Parameter	134 134 138 139 5140 143
		 7.2.4 Variation diverser Parameter	134 134 138 139 5140 143 144

7.3.1 Grundlagen, Randbedingungen und Eigenschaften des Volumenmode	ells145
7.3.2 Vorstellung der einzelnen Modellvarianten 1	48
7.3.2.1 Isotrope und orthotrope Materialeigenschaften	48
7.3.2.2 Randbedingungen für die Lagerung der einzelnen Modellvarianten	151
7.3.3 Gegenüberstellung von Stabwerksmodell und Solid 1	52
7.3.3.1 Gegenüberstellung von Stabwerk und einzelnen Varianten des Volumenmodells	53
7.3.3.1.1 Verformungen (GZG, Anfangszustand)	53
7.3.3.1.2 Schnittgrößen (GZT, Anfangszustand) 1	54
7.3.3.1.3 Schubkräfte (GZT, Anfangszustand) 1	57
7.3.3.2 Gegenüberstellung von Stabwerk und Vorzugsvariante des Volumenmodells	59
7.3.3.2.1 Verformungen (GZG, Anfangs- und Endzustand) 1	59
7.3.3.2.2 Bemessungsschnittgrößen (GZT, Anfangs- und Endzustand) 1	59
7.3.3.2.3 Bemessungsschubkräfte (GZT, Anfangs- und Endzustand) 1	61
7.3.4 Zusammenfassung und Schlussfolgerung 1	63
8 Zusammenfassung 1	65
8.1 Resultate und Schlussfolgerungen 1	65
8.2 Ausblick 1	70
Literaturverzeichnis	i

Abbildungsverzeichnis

Abb. 2-1:	Holz-Beton-Verbundkonstruktionen, systematisiert nach Art der Verbindung von Beton und Holz4
Abb. 2-2:	HBV-Schubverbinder nach [Z-9.1-557, 2012] aus [TiComTec® 2013]5
Abb. 2-3:	Verbundelement Kerve in Anlehnung an [Michelfelder 2006]5
Abb. 2-4:	Blockverleimter Brettschichtholzträger mit dem Verbundelement Dübelleiste aus [Simon, Barthl, Rautenstrauch 2009]
Abb. 2-5:	Pilotprojekt Birkbergbrücke Wippra im Mai 2010, 17 Monate nach Fertigstellung
Abb. 2-6:	Tragverhalten und maßgebende Schnittkräfte am hybriden Verbundtragwerk in Anlehnung an [Rautenstrauch et al. 2004] und [Holschemacher et al. 2013]
Abb. 2-7:	Stabwerksmodell in Anlehnung an [Rautenstrauch et al. 2004]15
Abb. 2-8:	Statisches Ersatzsystem für das Verbundelement ohne Berücksichtigung der Gurtsteifigkeit
Abb. 2-9:	Statisches Ersatzsystem für das Verbundelement mit Berücksichtigung der Gurtsteifigkeit
Abb. 2-10	D:Schematisches Spannungs-Zeit-Schaubild eines Dauerschwingversuchesund mögliche Bereiche der Schwingbeanspruchung nach [DIN50100:1978]
Abb. 2-11	Abminderungswert k _{fat} in Abhängigkeit von Ermüdungsklasse und Schwingspielzahl nach [Mohr 2001]21
Abb. 2-12	2:Abminderungswert k _{fat} in Abhängigkeit von Ermüdungsklasse und Spannungsverhältnis nach [Mohr 2001]21
Abb. 2-13	3:Abminderungswerte k _{fat} für verschiedene Beanspruchungen nach [Kreuzinger, Mohr 1994], [Mohr 2001] und der aktuellen Holzbrückennorm22
Abb. 2-14	Slip-Block-Test, Querschnitt und Ansicht einer Probe aus [Tommola, Salokangas, Jutila 1999]
Abb. 3-1:	Abstände der Kopfbolzendübel
Abb. 3-2:	Dübelleiste verbaut in Birkbergbrücke Wippra
	(Kopfbolzendübeldurchmesser 19 mm)
Abb. 3-3:	Push-Out-Versuch und Annahme für den internen Kraftfluss
Abb. 3-4:	Versuchsaufbau für Schertests unter statischer und zyklischer Belastung31
Abb. 3-5:	Aufbau der Versuchskörper bestehend aus Brettschichtholz
Abb. 3-6:	Probe mit passgenau eingefräster Kerve und eingelegter Dübelleiste (Serien E-K-A und E-K-B)
Abb. 3-7:	Probe mit Polymerbetonschicht in der last-übertragenden Zone zwischen
	Dübelleiste und Holz (Serie E-K-PC)
Abb. 3-8:	Herstellung des Polymerbetons

Abb. 3-9: Verbundmatrix des Polymerbetons (12,5-fache Vergrößerung)	.36
Abb. 3-10:Relativverschiebungsmessung mit IWT und Kraftmesseinrichtung an den	
Bolzen	.37
Abb. 3-11: Photogrammetrie-Messfeld mit applizierten Messpunkten	.37
Abb. 3-12:Prinzip der 2D-Photogrammetrie aus [Franke, B 2008]	.37
Abb. 3-13: Photogrammetrisches Messsystem mit telezentrischem Objektiv	.37
Abb. 3-14:Gesamtüberblick über die rechnerischen Versagenslasten	.39
Abb. 3-15:Verwendetes Lastregime für die Kurzzeitscherversuche	.39
Abb. 3-16:Statische Lastrampen der Probe E-K-B-1	.40
Abb. 3-17:Entwicklung Verschiebungsmodul K _{ser} des Probekörpers E-K-B-1	.40
Abb. 3-18:Statische Lastrampen der Probe E-K-PC-1	.41
Abb. 3-19:Entwicklung Verschiebungsmodul K _{ser} der Probe E-K-PC-1	.41
Abb. 3-20:Gemittelte Werte der Verschiebungsmoduln der einzelnen Serie bezogen	
auf laufenden Meter Dübelleistenlänge	.42
Abb. 3-21:Übersicht über den Anfangsschlupf	.42
Abb. 3-22:Gemittelte Last-Verschiebungs-Kurven aller Serien (Erstbelastung)	.43
Abb. 3-23:Gemittelte Last-Verschiebungs-Kurven aller Serien (Bruchversuch)	.43
Abb. 3-24:Bruchversuch der Probe E-K-B-1	.44
Abb. 3-25:Bruchversuch der Probe E-K-PC-1	.44
Abb. 3-26:Bruchfläche E-K-B-1	.45
Abb. 3-27:Vorholzriss E-K-B-1 (Ansicht Hirnholz)	.45
Abb. 3-28: Übergangsstreifen zwischen Holz- und Polymerbeton, Eindringtiefe des	
Epoxidharzes (25-fache Vergrößerung)	.45
Abb. 3-29:Variierende Eindringtiefen des Epoxidharzes und leere Luftporen (25-fache	15
Abb. 3-30: Erreichte Bruchlasten F. und (F.) aller Proben pro Verbundelement	. - -5 ./6
Abb. 3-30. Effective Diucinasten Γ_1 und (Γ_2) aller Floben proverbundelement	.40
und F_2	.46
Abb. 3-32: Verlauf der Schubfestigkeit in Abhängigkeit der Querdruck- (-) resp.	
Querzugspannungen (+) auf Basis der Versuchsergebnisse von [Spengler	
1982]	.48
Abb. 3-33:Gegenüberstellung theoretischer und experimentell ermittelter Bruchlasten infolge Abscheren des Vorholzes	.49
Abb. 3-34:Maximale Zugkräfte in den Bolzen [kN] in Relation zur Bruchlast F ₁ pro	
Verbundelement [kN/20cm]	.49
Abb. 3-35:Dehnungsverlauf quer zur Faser der Probe E-K-A-3 (Bruchversuch,	
Timestep 300), maximale Querzugdehnung im Kervengrund	.51
Abb. 3-36:Dehnungsverlauf quer zur Faser der Probe E-K-PC-4 (Bruchversuch,	E 4
	.51

Abb. 3-37:Rissbildung, E-K-PC-1 (Timestep 225)5	1
Abb. 3-38:Rissbildung, E-K-PC-1 (Timestep 300)5	1
Abb. 3-39:Bruchlasten der Kurzzeitscherversuche pro Probekörper in [kN]5	5
Abb. 3-40:Kraft-Zeit-Diagramm der Belastung für die drei ausgewählten Laststufen5	5
Abb. 3-41:Lastregime für die Versuche unter oft wiederholter Beanspruchung in	
Anlehnung an [DIN 50100:1978]5	6
Abb. 3-42:Kraft-Verformungskurven der Probe E-D-1_40% (statische	
Zwischenmessungen innerhalb der zyklischen Belastung)5	7
Abb. 3-43:Entwicklung der Verbundelementsteifigkeit der Probe E-D-1_40%5	7
Abb. 3-44:Kraft-Verformungskurve der Probe E-D-1_40% (Bruchversuch)	8
Abb. 3-45: Abgeschertes Vorholz der Probe E-D-1_40% nach statischem	
Bruchversuch	8
Abb. 3-46:Gemittelte Last-Verschiebungs-Kurven der Proben E-D-5 und E-D-PC-55	8
Abb. 3-47:Makroriss entlang des Vorholzes ausgehend vom Kervengrund, Probe E-	~
D-5 nach 2.282.500 Schwingspielen	8
Abb. 3-48: Verformungsverlauf aus "dynamischer" Messung von E-D-PC-5_50%	9
Abb. 3-49:Verformungsverlauf aus "dynamischer" Messung von E-D-PC-12_50%5	9
Abb. 3-50:Kraft-Verformungskurven der statischen Messungen der Probe E-D-PC-	^
Abb. 2 51:Entwicklung der Verbundelementsteifigkeit der Brehe E.D. DC 12 50%	9 0
Abb. 3-51:Entwicklung der Verbundelementsteinigkeit der Probe E-D-PC-12_50%	9
Schwingspielen	0
Abb. 3-53: Gegenseitige Relativverschiebung im Bruchzustand bei 5.161.512	-
Lastwechseln	0
Abb. 3-54:Überblick über die durchgeführten zyklischen Versuche und ertragene	
Schwingspielzahlen	0
Abb. 3-55:Ermüdungsbruch Probe E-D-PC-12_50%6	1
Abb. 3-56:Bruchflächen in der LR- und LT-Ebene des Probekörpers E-D-PC-15_60% 6	1
Abb. 3-57:Struktur und Ausrichtung des Holzes aus [Grosse 2005]6	2
Abb. 3-58:Gemittelte Maximalwerte der Verschiebung in Abhängigkeit der	
Lastspielanzahl6	2
Abb. 3-59:Initialverschiebungen (Anfangsschlupf)6	2
Abb. 3-60:Mittelwerte der Verschiebungsmoduln bezogen auf Ifd. Meter Kervenbreite aller Serien, sortiert nach Belastungszyklus	4
Abb. 3-61:Entwicklung der Verbundelementsteifigkeit über die Schwingspielzahl	
(Prinzipskizze)	4
Abb. 3-62:Definition der Schädigung aus [Gross, Seelig 2011]6	6

Abb. 3-63: Abnahme des Elastizitätsmoduls infolge der Schädigung durch
Uberschreiten des linearen Materialverhaltens durch steigende
Abb. 3.64: Abpahme des Verschiebungsmoduls infolge der Schödigung durch die off
wiederholte Belastung
Abb. 3-65:Schädigungsgrad je Probe in Abbängigkeit vom Belastungsniveau 68
Abb. 3-66:Prinzin der Energiedissination aus Ersthelastung und Lastwechsel bis zur
letzten statischen Belastung
Abb. 3-67:Übersicht über die bei den Durchläufern während der zyklischen Belastung
dissipierten Energie
Abb. 3-68:Bestimmung der reduzierten Verbundelementsteifigkeit nach [Simon 2008]70
Abb. 3-69:Reduzierte Verbundelementsteifigkeiten im Vergleich zur jeweiligen
Initialsteifigkeit
Abb. 3-70:Übersicht über die Bruchlasten F1 (Lastabfall, Zahlenwert im Diagramm
angegeben) und F_2 (Bruch, qualitativ) pro Verbundelement aller zyklisch
belasteten Proben72
Abb. 3-71: Übersicht über gemittelte Bruchlasten (Serienmittel) unter Einbeziehung
der Durchläufer (16 Versuche), zusätzlich Darstellung der
Kurzzeitscherversuche72
Abb. 3-72:Bruchversuch der Probe E-D-PC-5_50%74
Abb. 3-73:Bruchversuch der Probe E-D-PC-14_50%74
Abb. 3-74: Probe E-D-PC-14_50% vor dem Test, Keilzinkung oberhalb der
Lasteinleitung74
Abb. 3-75:Probe E-D-PC-14_50% nach Bruchversuch und zyklischer Belastung74
Abb. 3-76:Kennwerte der "Wöhlerlinie" aus [Radaj 2003]75
Abb. 3-77:Bruchlasten pro Verbundelement (VE) aus den Kurzzeitscherversuchen75
Abb. 3-78:Vorschläge für die "Wöhlerlinien" für den Mittelwert und für das 5 %-Quantil
der Ergebnisse für Serie E
Abb. 3-79:Vorschläge für die "Wöhlerlinien" für den Mittelwert und für das 5 %-Quantil
Abb 3 90:Cogonüberetellung von Ermüdungskonnlinion verschiedener
Verbundelementtynen 78
Abb 4-1: Probekörpergeometrie der Langzeitscherversuche als Push-Out-Test aus
[Simon 2008]
Abb. 4-2: Langzeitscherversuche unter den Randbedingungen der Nutzungsklasse 2
im Außenklima unter einer Bedachung, Lastaufbringung mit
Federkonstruktion
Abb. 4-3: Stahlfeder, Messstellen für Relativverschiebung und Permanentelektroden81
Abb. 4-4: Messwerte der Temperatur T, relativen Luftfeuchte (RH) und Holzfeuchte u
der Langzeitversuche82

Abb. 4-5:	Relativverschiebung zwischen Beton und Holz (Serie S – Schubleiste)84
Abb. 4-6:	Belastung der Langzeitscherproben über Federkonstruktion (Serie S – Schubleiste)
Abb. 4-7:	Mittlere Zunahme der Relativverschiebung zwischen den Verbundpartnern unter Langzeitbelastung
Abb. 4-8:	Genaue und approximierte Verläufe der Kriechbeiwerte der drei untersuchten Verbundelementtypen
Abb. 4-9:	Extrapolation des Kriechbeiwertes der Serie S (Schubleiste) für eine Dauer von 20.000 Tagen (54,8 Jahre)
Abb. 4-10	Entlastung der Probe S-L1 nach 2.079 Tagen unter konstanter Belastung89
Abb. 4-11	:Entlastung der Proben nach Langzeitbeanspruchung (Serie S – Schubleiste)
Abb. 4-12	E:Entlastete Probe S-L1 vor Ermittlung des Verschiebungsmoduls mit anschließendem Bruchversuch
Abb. 4-13	ELastregime zur Ermittlung von Verschiebungsmodul und Bruchlast nach [DIN EN 26891:1991]
Abb. 4-14	Initialbelastung und statische Lastrampen der Proben der Serien K, S und X 91
Abb. 4-15	:Gemittelte Verschiebungsmoduln der Langzeitversuche
Abb. 4-16	Initialsteifigkeiten vor und nach der Langzeitbeanspruchung (Serie S)92
Abb. 4-17	Gemittelter Verschiebungsmodul der Initialbelastung (Serienvergleich mit 2006)
Abb. 4-18	Bruchversuch der Proben der Serien K (Kerve) und S (Schubleiste)
Abb. 4-19	Versagen der Probe S-L1 infolge Abscheren des rechten Vorholzes auf Schub
Abb. 4-20	:Kurz- und Langzeitbruchlasten sowie konstante Belastung (Serienmittelwerte)94
Abb. 4-21	:Verschiebungen im Bruchzustand
Abb. 4-22	Bruchversuch der Proben der Serie X (X-Verbinder)
Abb. 4-23	Am Druckstab ausgelöstes Betondruckversagen (Probe X-L3)
Abb. 5-1:	Kumulierte Häufigkeit der Verbundelementsteifigkeit der Initialbelastung für beide Verbundfugenkonfigurationen (Serien E und E-PC)
Abb. 5-2:	Verteilungsdichte f(x) von Normal-, Extremwert- (Kleinst- und Größtwerte) und Lognormalverteilung
Abb. 5-3:	Verteilungsfunktion F(x) von Normal-, Extremwert- (Kleinst- und Größtwerte) und Lognormalverteilung101
Abb. 5-4:	Kumulierte Häufigkeit und für Normal- sowie Extremwertverteilung umgerechnete kumulierte Häufigkeit des Verschiebungsmoduls K _{ser} der Initialbelastung (Serie E)

Abb. 5-5:	Kumulierte Häufigkeit und für Lognormalverteilung umgerechnete kumulierte Häufigkeit des Verschiebungsmoduls K _{ser} der Initialbelastung (Serie E)102
Abb. 5-6:	Bestimmtheitsmaße für Zufallsvariable Verschiebungsmodul K_{ser} (Serie E).103
Abb. 5-7:	Bestimmtheitsmaße für Zufallsvariable Verschiebungsmodul K _{ser} (Serie E-PC)103
Abb. 5-8:	Statistische Werte der Zufallsvariable Verschiebungsmodul unter Zugrundelegung der Lognormalverteilung für Serie E
Abb. 5-9:	Statistische Werte der Zufallsvariable Verschiebungsmodul unter Zugrundelegung der Lognormalverteilung für Serie E-PC104
Abb. 5-10	2:Statistische Werte der Zufallsvariable Bruchlast unter Zugrundelegung der Lognormalverteilung für Serie E-K104
Abb. 5-11	Statistische Werte der Zufallsvariable Bruchlast unter Zugrundelegung der Lognormalverteilung für Serie E-K-PC104
Abb. 5-12	2:Charakteristische Verschiebungsmoduln K _{ser} ausgewählter Verbundelementtypen
Abb. 6-1:	Mögliche Versagensmechanismen bei dem Verbundelement Dübelleiste (Grafik in Anlehnung an [Simon 2008])110
Abb. 6-2:	Berechnungsmöglichkeiten der Holzdruckfestigkeit unter einem Winkel zur Faser
Abb. 6-3:	Ablaufschema zum Ermüdungsnachweis von Holz-Beton- Verbundstraßenbrücken
Abb. 7-1:	Querschnitt und Geometrie der untersuchten Holz-Beton- Verbundstraßenbrücke
Abb. 7-2:	Statische Modellierung der Holz-Beton-Verbundstraßenbrücke mit dem Stabwerksmodell
Abb. 7-3:	Berechnung der mitwirkenden Plattenbreite b _{eff} nach [DIN EN 1992-1- 1:2011]
Abb. 7-4:	LINKS: Lastmodell 1 nach [DIN EN 1991-2:2010] bezogen auf einen zweispurigen Überbau ([LF [3] bis LF [8])127
Abb. 7-5:	OBEN: Ermüdungslastmodell 3 nach [DIN EN 1991-2:2010], [LF 14]127
Abb. 7-6:	Konstante und linear veränderliche Temperaturanteile nach [DIN EN 1991- 1-5:2010] bezogen auf die untersuchte Überbaugeometrie
Abb. 7-7:	
	Normalkraftverlauf im Holzquerschnitt für ausgewählte Lastfälle (Anfangszustand)131
Abb. 7-8:	Normalkraftverlauf im Holzquerschnitt für ausgewählte Lastfälle (Anfangszustand)

Abb. 7-10:Schubkraftverlauf in der Verbundfuge für ausgewählte Lastfälle (Anfangszustand)
Abb. 7-11: Remeasures momente im Reton und Holz (Anfangs- und Endzustand) 134
Abb. 7-12:Bemessungschubkräfte im Verbundelement (Anfangs- und Endzustand) 134
Abb 7-13: Momentenbeanspruchung im Beton und Holz in Abbängigkeit vom
Verschiebungsmodul K _{ers} 135
Abb 7-14 Normalkraftbeanspruchung im Beton und Holz in Abhängigkeit vom
Verschiebungsmodul K _{ser}
Abb. 7-15:Nachweise im Holz in Abhängigkeit vom Verschiebungsmodul K _{ser}
Abb. 7-16:Schubkraft in der Verbundfuge in Abhängigkeit vom Verschiebungsmodul
K _{ser} 136
Abb. 7-17:Normalkraftverlauf im Holzquerschnitt für verschiedene
Verschiebungsmoduln unter Temperaturbelastung (Anfangszustand)138
Abb. 7-18:Momentenverlauf im Holzquerschnitt für verschiedene
Verschiebungsmoduln unter Temperaturbelastung (Anfangszustand)138
Abb. 7-19:Nachweise im Holz in Abhängigkeit von der Kriechzahl
Abb. 7-20:Schubkraft in der Verbundfuge in Abhängigkeit von der Kriechzahl
Abb. 7-21:Momentenverläufe im Beton- und Holzteilquerschnitt unter
Ermüdungsbelastung in Abhängigkeit von K _{ser} und k _{dyn} 140
Abb. 7-22: Auslastung der Ermüdungsnachweise im Beton- und Holzquerschnitt in
Abhängigkeit von K _{ser} und k _{dyn} 140
Abb. 7-23:Ermüdungstraglasten und Schubkraftverlauf in der Fuge unter
Ermudungsbelastung in Abhangigkeit von K_{ser} und k_{dyn}
Abb. 7-24: Auslastung der holzseitigen Ermudungsnachweise am Verbundelement in
Abhangigkeit von K _{ser}
Abb. 7-25. Nachweise im Holz in Abhängigkeit vom Verschiebungsmodul N_{ser} und N_{dyn} 144
Abb. 7-20. Venomining von Beton- und Holzquerschnitt in Abhangigkeit von K_{ser} und k_{tm} 144
Abb 7-27:3D-Volumenmodell einer Holz-Beton-Verbundstraßenbrücke. Variante mit
Lagerung in der Schwerachse des Holzes
Abb. 7-28:Verwendetes Materialgesetz für die Beschreibung der Kontaktsteifigkeit
aus [ANSYS® 2012]146
Abb. 7-29:Lastfall [7] – Tandemsystem (TS) in Brückenmitte, Anzeige der
Knotenkopplung148
Abb. 7-30:Lastfall [11] – Temperatur linear, Erwärmung der Oberseite um 15 K148
Abb. 7-31:Isotropes, multilinear-elastisches Materialgesetz für den
Betonteilquerschnitt149
Abb. 7-32: Verhältnis der Elastizitätsmoduln des Holzes (parallel und senkrecht zur
Easer) 140

Abb. 7-33:Verformung von Beton und Holz infolge Eigengewicht (LF [1])153
Abb. 7-34:Verformung von Beton und Holz infolge Doppelachse TS (LF [7])153
Abb. 7-35:Normalkraft im Holzteilquerschnitt infolge Eigengewicht (LF [1])155
Abb. 7-36:Moment im Holzteilquerschnitt infolge Eigengewicht (LF [1])155
Abb. 7-37:Normalkraft im Holz infolge Belastung mit dem Tandemsystem TS (LF [7]) 156
Abb. 7-38: Moment im Holz infolge Belastung mit dem Tandemsystem TS (LF [7])156
Abb. 7-39:Normalkraft im Holzteilquerschnitt infolge konstanter Temperaturbelastung (LF [9])
Abb. 7-40:Moment im Holzteilquerschnitt infolge konstanter Temperaturbelastung (LF [9]) 157
Abb. 7-41:Schubkraft in der Fuge infolge der Lastfälle Eigenlast (LF [1]) und TS (LF [7]) 158
Abb. 7-42:Schubkraft in der Fuge infolge konstanter Temperaturbelastung (LF [9])158
Abb. 7-43:Bemessungswerte der Normalkräfte im Beton und Holz für Anfangs- und
Endzustand (K _{ser} = 640 kN/mm/m)160
Abb. 7-44:Bemessungswerte der Momente im Beton und Holz für Anfangs- und
Endzustand (K _{ser} = 640 kN/mm/m)160
Abb. 7-45:Modellierung des Gesamtsystem mit in Längsrichtung wandernder Belastung aus Lastmodell 1 (Laststellung 9)
Abb. 7-46:Nicht-lineare Einflussfunktion der charakteristischen Schubkraft je
$Verbundelement (\kappa_{ser} = 640 \text{ kiv/min/m}) \dots 161$
und Endzustand (K _{ser} = 640 kN/mm/m)162
Abb. 7-48:Verlauf der Bemessungsschubkraft über die Trägerlänge für den Anfangs-
und Endzustand (K _{ser} = 8.700 kN/mm/m)162

Tabellenverzeichnis

Tab. 2-1:	Anzusetzende Material- und Verbundelementsteifigkeiten gemäß aktueller Normenlage
Tab. 3-1:	Abstände von Kopfbolzendübeln nach [DIN-Fb 104:2009]29
Tab. 3-2:	Randbedingungen für die Durchführung der Versuche unter oft wiederholter Belastung
Tab. 3-3:	Regressionsgleichungen der Ermüdungskennlinien für die Serien E und E- PC
Tab. 4-1:	Kriechbeiwerte der untersuchten Verbundelementtypen Kerve, Schubleiste und X-Verbinder
Tab. 6-1:	Grenzwerte für die bezogene Druckzonenhöhe aus [Baar, Ebeling, Lohmeyer 2013]108
Tab. 6-2:	Quotient von Spannungsamplitude und Ermüdungsfestigkeit und Ermüdungsbeiwerte
Tab. 6-3:	Ermittelte Ermüdungskoeffizienten "a"118
Tab. 7-1:	Parameterraum der Verbundelementsteifigkeiten K _{ser} für Stabwerks- und Volumenmodell
Tab. 7-2:	Geometrie-undQuerschnittswertesowieausgewählteMaterialeigenschaften der Verbundpartner
Tab. 7-3:	Übersicht über die Einzellastfälle als charakteristische Einwirkungen in Anlehnung an [Simon 2008]
Tab. 7-4:	Lastmodell 1 nach [DIN EN 1991-2:2010] mit Anpassungsfaktoren nach [DIN EN 1991-2/NA:2012]
Tab. 7-5:	Einwirkungskombinationen im Grenzzustand der Gebrauchstauglichkeit nach [DIN EN 1990:2010]131
Tab. 7-6:	Aufnehmbare Schubkräfte nach Norm sowie auf Basis der experimentellen Versuche
Tab. 7-7:	Angesetzte Materialparameter für den Baustoff Holz (orthotropes Materialmodell)
Tab. 7-8:	Übersicht über die einzelnen Modellvarianten151

1 Einleitung

1.1 Ausgangssituation und Problemstellung

Bedingt durch den Klimawandel und der damit einhergehenden, weltweit spürbaren negativen Folgen besteht die dringende Notwendigkeit, den Ausstoß von Treibhausgasen, insbesondere von Kohlendioxid, zu reduzieren. Dies wird zwangsläufig zu einer weiter steigenden Bedeutung von ökologischen Bauweisen und nachwachsenden Rohstoffen führen. In diesem Zusammenhang spielt der nachhaltig verfügbare Baustoff Holz, der während seiner Wachstumsphase der Atmosphäre Kohlendioxid entzieht, dieses über seine gesamte Nutzungsdauer als Kohlenstoff speichert und dadurch eine sehr gute Umweltbilanz besitzt, eine zentrale Rolle. Während im Hochbau der Anteil der ökologischen Holzbauweise stetig wächst, spielt der Baustoff Holz im Bereich des Verkehrsbaus eine eher untergeordnete Rolle – nahezu ausschließlich werden hier die in ihrer Herstellung sehr energieintensiven Materialien Stahl und Beton verwendet. Daher können Holz-Beton-Verbundbrücken eine ökologisch und ökonomisch sinnvolle Alternative zu den konventionellen Massiv- und Verbundbauweisen darstellen und einen Beitrag zum Klimaschutz leisten.

Aufbauend auf einer Vielzahl von experimentellen Versuchen, Parameterstudien und Simulationen wurde im Vorfeld dieser Arbeit an der Professur Holz- und Mauerwerksbau der Bauhaus-Universität Weimar bereits ein für den Holz-Beton-Verbundstraßenbrückenbau geeignetes Verbundelement entwickelt. Die aus einer Stahlplatte mit aufgeschweißten Kopfbolzendübeln bestehende Dübelleiste nutzt für die holzseitige Schubkraftübertragung in der Verbundfuge das Versatzprinzip, während auf der Betonseite analog zu dem Stahlverbundbau die Kopfbolzendübel die Kraftübertragung realisieren. Zudem besitzt die Dübelleiste neben hohen Werten für Verbundelementsteifigkeit und Tragfähigkeit ein ausgeprägt duktiles Bruchverhalten. Die Entwicklung dieses vorteilhaften Verbundelementes verhalf der hybriden Bauweise mit der Errichtung der Birkbergbrücke bei Wippra (Sachsen-Anhalt) als erster Holz-Beton-Verbundstraßenbrücke Deutschlands zur erfolgreichen Umsetzung in die Praxis.

Neben dem Kurzzeitverhalten spielt für eine sichere Bemessung einer Verbundkonstruktion auch das Tragverhalten unter Langzeiteinwirkungen eine entscheidende Rolle, da die Verbundpartner Beton und Holz unterschiedliche Langzeiteigenschaften besitzen. In diesem Zusammenhang sind Kriech- und Schwindprozesse des Betonquerschnittes, Kriechen und hygroexpansive Vorgänge (Quellen und Schwinden) im Holz, die zudem von der Holzfeuchtigkeit abhängen, sowie die differenten Ausdehnungskoeffizienten von Beton und Holz unter Temperaturbeanspruchung zu nennen. Zur experimentellen Beurteilung dieser hochkomplexen Vorgänge wurden an der Professur Holz- und Mauerwerksbau bereits im Jahre 2006 Langzeitscherversuche initiiert, die im Rahmen dieser Arbeit übernommen, fortgeführt, abgeschlossen und umfassend ausgewertet werden.

Des Weiteren unterliegt gerade eine Straßenbrücke zyklischen Belastungen aus dem Verkehr. Aus diesem Grund muss neben dem Ermüdungstragverhalten der am Verbund beteiligten Materialien Beton und Holz auch das Tragverhalten des Verbundfugenbereiches unter oft wiederholter Belastung bei der Dimensionierung und Nachweisführung einer Verbundkonstruktion berücksichtigt werden. Auch hierzu wurden an der Professur Holz- und Mauerwerksbau experimentelle Untersuchungen angestellt, deren Umfang für eine detaillierte Beurteilung des Ermüdungstragverhaltens des Verbundelementes Dübelleiste jedoch nicht ausreichten und daher den Ausgangspunkt der vorliegenden Arbeit darstellen.